Add debugging messages to mmc1 script mirroring test

This commit is contained in:
beyondcoast 2018-11-23 22:37:44 -06:00
commit 6333a1e4ae
23 changed files with 5823 additions and 689 deletions

674
LICENSE Normal file
View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
INL-retro-progdump
Copyright (C) 2018 Paul Molloy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
INL-retro-progdump Copyright (C) 2018 Paul Molloy
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

Binary file not shown.

View File

@ -0,0 +1,827 @@
:100000000C9476000C947D180C9493000C9493003F
:100010000C9493000C9493000C9493000C94930014
:100020000C9493000C9493000C9493000C94930004
:100030000C9493000C9493000C9493000C949300F4
:100040000C9493000C9493000C9493000C949300E4
:100050000C9493000C9493000C9493000C949300D4
:100060000C9493000C9493000C9493000C949300C4
:100070000C9493000C9493000C94930009021200CA
:10008000010100806409040000000000000012016A
:100090001001FF000008C016DC050102010200018A
:1000A0001E0349004E004C00200052006500740001
:1000B00072006F002D00500072006F0067002A036D
:1000C00049006E00660069006E00690074006500FA
:1000D0004E00650073004C006900760065007300F7
:1000E0002E0063006F006D000403090411241FBE7D
:1000F000CFEFD4E0DEBFCDBF11E0A0E0B1E0E8E893
:10010000F3E302C005900D92A630B107D9F723E0C2
:10011000A6E0B1E001C01D92A43EB207E1F70E9443
:1001200091190C94C2190C94000080E00895089570
:100130000F931F93CF93DF93EC01FB01D901009143
:100140004D0110914E01888187FF09C08E818C93EB
:10015000442399F00481158180E883831DC08FEFCB
:100160008C938E8180933801442309F44BC07093A3
:100170006A036093690380E9F0CFE0912501F09173
:1001800026018381883DA1F50481158180E8838360
:10019000E0912501F09126011782E0912501F0916F
:1001A000260183818039F1F48A81813711F080340E
:1001B000C9F4E0916903F0916A030480F581E02DB0
:1001C0008C818083E0916903F0916A030480F5815A
:1001D000E02D8D818183E0916903F0916A0387812D
:1001E0008E5F8783C801DF91CF911F910F91089592
:1001F000803D11F41C92CCCF8FEF8C9380E10E9454
:10020000E611C6CFE0912501F0912601838181118D
:1002100006C0F0936A03E093690380E9B8CF883998
:1002200069F7E8CFE9E5F1E08FEF819391E0E936F6
:10023000F907D9F780934C0180932B0180934B01F0
:1002400080932A0180933C018093180180933B01A5
:100250008093170181E00C94E611CF93DF93FC01AA
:1002600050E0CA01820F911D4197E4F52223E1F18C
:1002700083818F3FD9F582818F3FD1F5DA01A75A6B
:10028000BE4FED0180E099919F3FA1F58F5F28134C
:10029000FACF62831382982F9295990F907E915096
:1002A0009683178210861182108211861286138619
:1002B000148615861686178695E0440F551F9A9565
:1002C000E1F72091000130910101420F531F558346
:1002D000448390E06D939F5F8913FCCF80E0DF91B2
:1002E000CF9108958EEBFBCF82ECF9CF8FEBF7CF58
:1002F00080ECF5CF81ECF3CFCF93DF93DC01EB0102
:100300009A0112969C91129780ED890F803318F50F
:1003100013968C911397813041F0E8F08230A9F068
:100320008330B1F085EB888346C0E8E2F1E0913597
:1003300009F476C048F5913309F449C078F499235B
:10034000B9F19033E1F184EBEECFE9E3F1E0EFCFE7
:10035000E5E1F1E0ECCFE9E4F1E0E9CF933309F432
:1003600046C0E8F1903579F7188286E08983868166
:100370008A8383818B8387818C8380858D8382812F
:100380008E8387858F8317C0903808F05FC09037C1
:1003900008F055C0903679F19136C9F1923599F649
:1003A000188282E0898380818A8381818B8303C064
:1003B0000E9412011882CE01DF91CF910895149608
:1003C0008C91149715969C9191878287F3CF149600
:1003D0008C91149715969C9193878487EBCF1496F4
:1003E0008C91149715969C9195878687E3CF1496E8
:1003F0008C918787DFCF188281E089831496ED91F5
:10040000FC911597E75AFE4F80818A83D4CF1882DA
:1004100081E08983E0912501F09126018381F5CF68
:10042000188286E0898381858A8382858B83838590
:100430008C8384858D8385858E838685A3CF40E0DC
:10044000BF01CD01DF91CF910C949800892F877067
:10045000813049F0F8F0823001F1833009F062CF49
:10046000E5E1F1E002C0E8E2F1E0903808F4A3CF62
:100470009838B0F09059983008F09DCF18821396B4
:100480008C911397808714968D919C9115979183E9
:10049000808391CFE9E4F1E0E8CFE9E3F1E0E5CF53
:1004A00014964C91149715966C91159713962C9160
:1004B000CF010E942D0137CF90914C0180912B01EB
:1004C0008F3F79F481E09F3F09F480E090913C01F7
:1004D0009F3F09F083E0909118019F3F09F084E06D
:1004E000089582E0F3CF623059F421E08934920715
:1004F00049F121E08832920789F489E491E00EC045
:10050000633069F421E089349207E1F021E0883218
:100510009207D9F021E08933920779F30895643086
:10052000E9F721E08934920769F021E088329207E7
:1005300061F021E08933920759F021E0853192077B
:1005400069F7DBCF88E291E0089589E391E00895AF
:1005500085E191E008951F93CF93DF930E94EC1102
:10056000823D09F071C00E945C028093060189E41B
:1005700091E090932601809325010E94EC11823D29
:10058000A1F4D09106018091250190912601C1E04E
:10059000CD1708F45FC0909326018093250120E8D1
:1005A000FC01238380ED0E94E6110E94EC11823F42
:1005B00041F480EF0E94E611E0912501F0912601BF
:1005C00013820E94EC11C82F803DE1F48091250137
:1005D00090912601FC0123812038A1F4609106014D
:1005E0000E9473029093260180932501FC011782DB
:1005F000C3830E944403E0912501F09126018823E2
:1006000071F183830E94EC11182F803FC9F4C091CF
:100610002501D09126018B81883991F460910601E2
:10062000CE010E9473029093260180932501FC0164
:1006300013821B83CE010E94D5088823C9F08B83C7
:10064000DF91CF911F9108950E94EC11823F09F034
:1006500094CF89CF6D2F0E947302CF5F99CF2085F1
:1006600080819181820F911D9183808388EDC9CF14
:1006700084EF8B83288588819981820F911D9983CE
:100680008883DECF88E80895CF92DF92EF920F93B0
:100690001F93CF93DF931F92CDB7DEB76C01DC01C0
:1006A0000D911C911197602F1996EC918E2F90E06F
:1006B000FC017097E631F10508F017C1EE59FC4FC7
:1006C0000C94BC19DD032E044E045104750475040A
:1006D0007504750475047504750475047504750452
:1006E00075047504780385039F03B203B903CE0331
:1006F000F6016585603108F002C1F0E16F9FB0013D
:100700001124602B0FEFD60120C0D6011D966C91ED
:100710001D97862F837C8111F2C0602B0FEF1696F8
:100720002C91169712964C91129714968D919C913C
:1007300015970E94340EF601878380E0D7C0D6015A
:100740001D966C911D97602B0FEF16962C911697A6
:1007500012964C91129714968D919C9115970E9428
:10076000FC0DE9CFD6011D966C911D97862F807CDC
:10077000D2CFD6011D966C911D97602BEE24EA9482
:1007800016960C91169712962C91129740E014969B
:100790008D919C9115970E941E15CDCFD6011D9667
:1007A0006C911D97602BEE24EA9416960C91169787
:1007B00012962C91129741E0EACFD6011D968C91AA
:1007C0008E31E1F4202F2F7BB80146E076956795B6
:1007D0004A95E1F780E090EC29830E949A0D2981E7
:1007E000622F60680FEFF601268142818481958136
:1007F0000E94FC0DD60117968C939FCF8C31A1F4EB
:1008000061E880E090E50E949A0DB801660F672FBD
:10081000661F770B719580E090E80E949A0D60E06A
:1008200080E090E50E949A0DF6018585102F8F31AA
:1008300039F010680FEFF60126814281612FD6CF83
:100840001F7810686081718124E0769567952A95FC
:10085000E1F780E090E50E949A0DECCFF6018585E6
:100860008E3F09F06ACFB80195E0769567959A9525
:10087000E1F78FEF9FE30E94C40D602F6F710FEFC0
:10088000D60116962C91169712964C9112971496A3
:100890008D919C9115970E946C0E4DCF602F6066D4
:1008A00031CFD6011D968C91811119C0602F6068DF
:1008B000000F012F001F110B1195202F8FEF84B90E
:1008C00025B95F9A5F9814B8EE24EA94F601068180
:1008D000228140E0848195810E941E158BCF81305A
:1008E00069F7212F2F732064E9CF83EC0F90DF91FC
:1008F000CF911F910F91EF90DF90CF90089584ECEE
:10090000F5CFCF92DF92EF92FF920F931F93CF9389
:10091000DF937B016A01DB011796CC91D0E0082FB1
:1009200010E0102F0027D70116968C91169790E0B3
:100930008C179D0760F41796CC9380E0DF91CF91E0
:100940001F910F91FF90EF90DF90CF900895CE010F
:100950009927D7011496ED91FC911597E80FF91F8F
:100960006081802B912BF60109952196DCCF4F9267
:100970005F926F927F928F929F92AF92BF92CF922F
:10098000DF92EF92FF920F931F93CF93DF934A0171
:100990003901E8015F80A52CB12C8501162B8E81D1
:1009A000851598F45F8280E0DF91CF911F910F91C0
:1009B000FF90EF90DF90CF90BF90AF909F908F907F
:1009C0007F906F905F904F9008956AEAC401F7019D
:1009D000099565E5C301F701099560EAC401F701CE
:1009E0000995EC81FD81EA0DFB1D6081C801F701CD
:1009F00009950E945E17C801F6010995482EC801A5
:100A0000F60109954812F5CFCACF2F923F924F9227
:100A10005F926F927F928F929F92AF92BF92CF928E
:100A2000DF92EF92FF920F931F93CF93DF93CDB797
:100A3000DEB727970FB6F894DEBF0FBECDBF582E96
:100A40004A013C832B831F830E83D80117964C9059
:100A5000042D10E070E0F62FEE27FA83E983252CB1
:100A6000312CF7E92F1AF2E03F0AAE81BF811696CA
:100A70008C91169790E080179107E0F417964C92AE
:100A800080E027960FB6F894DEBF0FBECDBFDF9192
:100A9000CF911F910F91FF90EF90DF90CF90BF907B
:100AA000AF909F908F907F906F905F904F903F900E
:100AB0002F90089560E089E69DEF0E949A0D6AEA02
:100AC000C401F701099565E58B819C81F7010995C2
:100AD00060EAC401F7010995652DC1010E949A0DD4
:100AE000642C712CA980BA80A628B728AE81BF815A
:100AF0001496ED91FC911597E60DF71D6081C501E7
:100B0000F70109950E945E17C501F6010995282F86
:100B1000C5012D83F60109952D812813F3CFAE81F0
:100B2000BF8114968D919C911597680E791EF301E3
:100B30008081281307C043940F5F1F4F5198599A23
:100B4000599893CF519A599A90CF2F923F924F92A2
:100B50005F926F927F928F929F92AF92BF92CF924D
:100B6000DF92EF92FF920F931F93CF93DF9300D00A
:100B700000D01F92CDB7DEB7382E4A0129011D8360
:100B80000C83D80117962C90022D10E070E0F62F00
:100B9000EE27FA83E983AC81BD8116968C91169776
:100BA00090E080179107D8F417962C9280E00F9070
:100BB0000F900F900F900F90DF91CF911F910F9199
:100BC000FF90EF90DF90CF90BF90AF909F908F906D
:100BD0007F906F905F904F903F902F90089561E0CD
:100BE00080E090EC0E949A0D6AEAC401F701099531
:100BF00060E080E090EC0E949A0D65E5C201F7018B
:100C0000099561E080E090EC0E949A0D60EAC401D1
:100C1000F7010995632D80E090EC0E949A0D622CFB
:100C2000712CA980BA80A628B728AC81BD81149602
:100C3000ED91FC911597E60DF71D6081C501F70157
:100C400009950E945E17C501F6010995282FC50177
:100C50002B83F60109952B812813F3CFAC81BD813D
:100C600014968D919C911597680E791EF3018081E1
:100C7000281307C023940F5F1F4F5198599A599812
:100C80008ACF519A599A87CF3F924F925F926F9233
:100C90007F928F929F92AF92BF92CF92DF92EF920C
:100CA000FF920F931F93CF93DF93482E662E7A0106
:100CB000E901DA0117965C90A52CB12C6AEA8AEA60
:100CC0009AE8F901099565E585E595E8FE0109953C
:100CD00060E28AEA9AE8FE010995712C762C662476
:100CE000D70116968C91169790E08A159B0520F5F2
:100CF00017965C9260E980E090E8FE01099560E05B
:100D000080E090E8FE01099560EF80E090E8FE0148
:100D1000099580E0DF91CF911F910F91FF90EF90A7
:100D2000DF90CF90BF90AF909F908F907F906F900B
:100D30005F904F903F90089564E580E090E50E94B9
:100D40009A0D852C912C6401C628D72860EAC6012B
:100D5000FE010995D7011496ED91FC911597E80DC8
:100D6000F91D6081C601FE0109950E945E17C6014A
:100D7000F8010995382EC601F80109953812F5CF0A
:100D8000D70114968D919C911597880E991EF401A8
:100D90008081381208C05394FFEFAF1ABF0A5198F0
:100DA000599A59989DCF61E880E090E50E949A0D8C
:100DB000642D80E090E80E949A0D64E580E090E563
:100DC0000E949A0D519A599A8BCF4F925F926F92CF
:100DD0007F928F929F92AF92BF92CF92DF92EF92CB
:100DE000FF920F931F93CF93DF93662E7A01E90151
:100DF000DA0117965C90A52CB12C6AEA8AEA9AE887
:100E0000F901099565E585E595E8FE01099560E23A
:100E10008AEA9AE8FE010995712C762C6624D7019E
:100E200016968C91169790E08A159B0518F51796E3
:100E30005C9260E980E090E8FE01099560E080E066
:100E400090E8FE01099560EF80E090E8FE010995C9
:100E500080E0DF91CF911F910F91FF90EF90DF9095
:100E6000CF90BF90AF909F908F907F906F905F904A
:100E70004F900895852C912C6401C628D72860EAEC
:100E8000C601FE010995D7011496ED91FC911597C5
:100E9000E80DF91D6081C601FE0109950E945E17EB
:100EA000C601F8010995482EC601F80109954812B6
:100EB000F5CFD70114968D919C911597880E991EA8
:100EC000F4018081481208C05394FFEFAF1ABF0AA3
:100ED0005198599A5998A3CF519A599AA0CF4F92A5
:100EE0005F926F927F928F929F92AF92BF92CF92BA
:100EF000DF92EF92FF920F931F93CF93DF93662EB3
:100F00007A01E901DA0117965C90A52CB12C6AEA06
:100F10008AEA9AE0F901099565E585E595E0FE0123
:100F2000099560E28AEA9AE0FE010995712C762C17
:100F30006624D70116968C91169790E08A159B052A
:100F400018F517965C9260E980E090E0FE01099543
:100F500060E080E090E0FE01099560EF80E090E0C5
:100F6000FE01099580E0DF91CF911F910F91FF90D5
:100F7000EF90DF90CF90BF90AF909F908F907F9039
:100F80006F905F904F900895852C912C6401C62836
:100F9000D72860EAC601FE010995D7011496ED91A4
:100FA000FC911597E80DF91D6081C601FE010995B8
:100FB0000E945E17C601F8010995482EC601F80186
:100FC00009954812F5CFD70114968D919C911597EC
:100FD000880E991EF4018081481208C05394FFEFD7
:100FE000AF1ABF0A5198599A5998A3CF519A599A52
:100FF000A0CF4F925F927F928F929F92AF92BF92BB
:10100000CF92DF92EF92FF920F931F93CF93DF93D4
:10101000A62E6A01E901DA011796EC90F12CA89549
:1010200000000000000000000000000000000000C0
:10103000000040E06AEA8AEA9AE8F901099540E08E
:1010400065E585E595E8FE01099540E060E28AEAFC
:101050009AE8FE010995B12CBA2CAA24D60116965D
:101060008C91169790E08E159F0530F51796EC92AF
:1010700040E060E980E090E8FE01099540E060E032
:1010800080E090E8FE01099540E060EF80E090E8A4
:10109000FE010995000080E0DF91CF911F910F9133
:1010A000FF90EF90DF90CF90BF90AF909F908F9088
:1010B0007F905F904F90089560E080EA0E940F1546
:1010C0002701552442018A289B28D6011496ED91C8
:1010D000FC911597E40DF51D40E06081C401FE010F
:1010E0000995000000000000000000000000000062
:1010F00000000000A8950E945E1760E0C401F8019E
:101100000995782E0000000000000000000000009B
:10111000000000000000D6011496ED91FC91159797
:10112000E40DF51D80817816C1F00000000000007C
:1011300000000000000000000000000060E0C401AA
:10114000F801099578120DC00000000000000000B1
:1011500000000000000000000000FFEFEF1AFF0A8F
:101160007DCF000000000000000000000000000033
:10117000000000000000000000000000000000006F
:10118000000000000000000000000000000000005F
:10119000000000000000000000000000000060E00F
:1011A000C401F8010995782EC9CFBF92CF92DF9282
:1011B000EF92FF920F931F93CF93DF93EC01B880D0
:1011C0008985823109F43CC138F48031A9F081313C
:1011D00009F4E6C083EC06C0833109F439C18431D7
:1011E000C9F780E0DF91CF911F910F91FF90EF90B1
:1011F000DF90CF90BF9008958D85811107C046EC98
:101200005EE0BE0180E88B0D0E9481048D858130F7
:1012100039F444E15FE0BE0180E88B0D0E94810457
:101220008D85833039F445E75FE0BE0180E88B0DA2
:101230000E9481048D85843039F44CEF5FE0BE015B
:1012400080E88B0D0E9481048D858A3039F44FE44B
:1012500050E1BE0180E88B0D0E9481048D858D3F99
:10126000D1F46B2D6F736068B62E8881998116E07A
:10127000969587951A95E1F708E8C02E0DE0D02ED7
:101280009FE5E92E9DE0F92E8E012AEA3AE245E536
:1012900055E50E9405058D858E31D1F46B2D6F7358
:1012A0006068B62E88819981F6E096958795FA95C3
:1012B000E1F7A8E8CA2EADE0DA2EBAE9EB2EBDE0E0
:1012C000FB2E8E012AEA3AEA45E555E90E94A5057A
:1012D0008D858C3031F56B2D6F716068B62EE8808E
:1012E000F98065E0F694E7946A95E1F765EA80E0B5
:1012F00090E60E949A0D6E2D8FEF9FEF0E949A0D3F
:1013000078E8C72E7DE0D72EEAE9EE2EEDE0FE2E3E
:101310008E012AEA3AEA45E555ED6B2D80E00E9400
:10132000B7048D858C3101F5E880F980EE0CEF2C47
:10133000EE1CFF08F19461E880E090E50E949A0DB0
:101340006E2D80E090E80E949A0D64E580E090E5C3
:101350000E949A0D08E81DE02AE93DE0AE016B2DE0
:1013600060688E2D0E9444068D858F3109F039CF3B
:10137000E880F98044E0F694E7944A95E1F76E2D11
:1013800080E090E50E949A0D6B2D6F78606808E808
:101390001DE02AE93DE0AE018E2D0E94E50621CF39
:1013A0008D85811106C04DEE5EE0BE018B2D0E9441
:1013B00081048D85813031F441E45FE0BE018B2DE5
:1013C0000E9481048D85823031F440EB5FE0BE01E4
:1013D0008B2D0E9481048D85843031F448E250E1E8
:1013E000BE018B2D0E9481048D858A3031F44CE73B
:1013F00050E1BE018B2D0E9481048D858B3031F42C
:1014000049EB50E1BE018B2D0E9481048D858E3FFA
:1014100009F0E7CE6881798135E0769567953A9550
:10142000E1F78FEF9FE30E94C40D6B2D6F7108ED04
:101430001DE02AEE3DE0AE0180E00E946F07D1CEB4
:101440004AE95DE0BE0180E68B0D0E948104C9CEB1
:101450008D85843039F44FE555E1BE0180E88B0D70
:101460000E9481048D85853031F44FE555E1BE0140
:101470008B2D0E9481048D85863039F44CE855E12E
:10148000BE0180E88B0D0E9481048D85873031F488
:101490004CE855E1BE018B2D0E9481048D858111A0
:1014A00019C08B2D8068B82E88819981880F892F6B
:1014B000881F990B91959FEF94B985B95F9A5F98B2
:1014C00014B80AED14E126EF34E1AE016B2D80E093
:1014D0000E94F9078D85813009F083CE89818F7351
:1014E00080649FEF94B985B95F9A5F9814B80AED4C
:1014F00014E126EF34E1AE016B2D80E00E94F90784
:1015000070CE882321F0813041F480E0089591E08D
:10151000F90190839AEA918308958FEA08958AEAFF
:1015200008950895882321F0813041F480E00895E2
:1015300091E0F90190839AEA9183089580EB0895F0
:101540008AEA089508953898409A3998419A3A98C5
:10155000429A3C98449A3D98459A3E98469A5398A8
:101560005B9A55985D9A3B98439A3F98479A57984B
:101570005F9A5098589814B88FEF85B93F9A47985A
:1015800081B911B882B914B885B914B885B9519820
:10159000599A08950E94A30A399A419A389A409814
:1015A0003A9A429A3C9A449A3D9A459A14B88FEFD7
:1015B00085B914B885B914B885B93F9A479881B9E7
:1015C00012B884B915B8479A479814B808950E947C
:1015D000A30A399A419A3C9A449A3D9A459A589A54
:1015E000509A14B88FEF85B914B885B914B885B975
:1015F0003F9A479881B912B884B915B8479A479865
:1016000014B814B885B9579A5F9884B915B85F9A19
:101610005F9814B80895823081F0833061F0813092
:10162000A1F40898109A1092B90380E290E0909388
:10163000B8038093B70380E008955098589A88E0E3
:101640008093B90389E290E0F2CF87E90895813071
:1016500049F414B88FEF85B9579A5F980E94A00B90
:1016600080E0089588E908955898509A000089B15B
:101670005098589880FD22C05098589A59B149B155
:10168000000039B10000000029B100000000000096
:1016900099B1000000000000000089B150985898EE
:1016A00050FD0EC040FD0EC030FD0EC020FD0EC02E
:1016B00090FD0EC080FD0EC080EE089580EF08956D
:1016C00080E0089581E0089583E0089586E008951C
:1016D0008AE008958FE008950F931F93CF93C82F4A
:1016E000842F8901C230F9F030F4CC2389F0C13065
:1016F000B1F0C6E90FC0C430F1F0C0F0C038C9F78E
:1017000081E0F90180830E94340BF801818309C0D4
:101710000E94A30A8C2FCF911F910F9108950E94D0
:10172000CA0AC0E0F7CF0E94E70AFBCFCF911F9112
:101730000F910C940B0BCF911F910F910C94270BD1
:10174000109214018FEF84B915B85F9A5F9814B89E
:101750005098589A80E880936C0310927A03EBE7D4
:10176000F3E0119283E0EB39F807D9F7089560911F
:101770007A03813109F441C0109214019FEF94B9AA
:101780009091140195B95F9A5F9814B820E070E0C9
:101790003FEF8032C9F4E72FF0E0E558FC4F40817D
:1017A00050E0022E02C0559547950A94E2F740FF9B
:1017B00028C092E034B995B95F9A5F9814B82F5F4A
:1017C000283011F47F5F20E0492F446034B945B9D7
:1017D0005F9A5F9814B8615034B995B95F9A5F9871
:1017E00014B86111D6CF909314014093270134B9F6
:1017F00015B85F9A5F9814B8089592E09093140119
:10180000BDCF90E0D7CF0F931F93CF93DF9350912D
:101810007A03B0917B03813109F46BC010921401FB
:101820009FEF94B99091140195B95F9A5F9814B89D
:1018300020E030E07FEFC1E0D0E0803281F4EB2F98
:10184000F0E0022E02C0F595E7950A94E2F7E0FF7A
:1018500054C0916074B995B95F9A5F9814B86032BA
:10186000B1F4211105C0E32FF0E0E558FC4F1082E0
:10187000489B0DC0E32FF0E0E558FC4FA0818E019E
:10188000022E01C0000F0A94EAF7A02BA08351504A
:10189000442341F0511106C0926074B995B95F9A22
:1018A0005F9814B8A92FA46074B9A5B95F9A5F981E
:1018B00014B874B995B95F9A5F9814B82F5F28303F
:1018C00039F43F5FE32FF0E0E558FC4FB08120E0B2
:1018D0005111B3CF90931401A09327018FEF84B9D6
:1018E00015B85F9A5F9814B8DF91CF911F910F914F
:1018F000089591E09093140193CF9E7FABCF809198
:101900006C038338D1F580916D03883009F463C08E
:10191000C0F4833009F445C030F4813079F182306D
:10192000A1F18EEE28C0863009F44AC008F04EC0FE
:101930008430B9F781E880936C0341E060E281E193
:1019400036C08F30C1F148F48D3031F18E3049F717
:1019500081E880936C0340E028C0803849F08F3FD5
:1019600049F08031F1F681E880936C0340E02CC0AF
:101970000C94A00B80EF80936C03089581E8809312
:101980006C0380E20E94B70B14C081E880936C0363
:1019900041E060E080E20BC081E880936C0340E0AE
:1019A000F8CF81E880936C0341E060E280E10E941F
:1019B000030C82E8E0CF81E880936C0340E0BECF67
:1019C00081E880936C0341E060E2E4CF81E880939A
:1019D0006C0380E1D7CF81E880936C0381E1D2CFA3
:1019E000CF93DF93E901843061F138F48230E1F084
:1019F00008F58130A1F087E80FC0873039F128F46D
:101A00008530C9F740937A0306C0883021F18038C9
:101A100091F70E94A00B80E0DF91CF910895909103
:101A20006D0399838883F7CF40936D0383E8809398
:101A30006C03F1CF40936D0383E880936C030E94A5
:101A40007F0C80916C03898381E0ECCF40937B0312
:101A500050937C03E0CF80917B03898380917C034A
:101A60008A8380917D038B8380917E038C83809118
:101A70007F038D83809180038E8386E0D3CF88237C
:101A800021F0813041F480E0089591E0F9019083E4
:101A90009AEA9183089582EB08958AEA0895089559
:101AA00082B98FEF84B995B9479A479814B884B929
:101AB00065B9509A58985098589A14B8089582B9B0
:101AC0008FEF84B995B9479A479814B884B965B926
:101AD000509A5898589A14B8089550985898409821
:101AE000419A429A82B92FEF24B995B9479A4798FB
:101AF00014B800000000409A97FD419800000000D3
:101B0000000000000000000083B14098419A089551
:101B100082B92FEF24B995B9479A479814B8409ADB
:101B200097FD4198000000000000000083B140983C
:101B3000419A08955098589882B92FEF24B995B9D1
:101B4000479A479814B8429824B965B9409A97FDC6
:101B50004198000000004098419A429A14B80895B4
:101B6000811520E2920708F4906882B98FEF84B95A
:101B700095B9479A479814B84498000000000000AF
:101B8000000083B1449A0895811520E2920708F479
:101B9000906882B98FEF84B995B9479A479814B87D
:101BA00084B965B9000045980000459A14B80895B5
:101BB00082B98FEF84B995B9479A479814B8409A7B
:101BC0004198449800000000000083B1449A409876
:101BD000419A089582B98FEF84B995B9479A479889
:101BE00014B84098419884B965B900004598000040
:101BF000459A14B8419A0895EF92FF920F93CF93AC
:101C0000DF9300D01F92CDB7DEB77C018FEF84B990
:101C100065B9479A479814B8409A67FD419842B908
:101C2000000080E0011117C00000000093B1F7012F
:101C3000E80FF11D90834F5F42B98F5F281790F72F
:101C40004098419A0F900F900F90DF91CF910F9194
:101C5000FF90EF9008952B834A8389830E945E173B
:101C600089814A812B81E2CFEF92FF920F93CF932C
:101C7000DF9300D01F92CDB7DEB77C01603208F44D
:101C800060688FEF84B965B9479A479814B844984B
:101C900042B9000080E0011116C00000000093B1BD
:101CA000F701E80FF11D90834F5F42B98F5F28174E
:101CB00090F7449A0F900F900F90DF91CF910F9172
:101CC000FF90EF9008952B834A8389830E945E17CB
:101CD00089814A812B81E3CFEF92FF920F93CF93BB
:101CE000DF9300D01F92CDB7DEB77C018FEF84B9B0
:101CF00065B9479A479814B8409A4198449842B9B0
:101D0000000080E0011118C00000000093B1F7014D
:101D1000E80FF11D90834F5F42B98F5F281790F74E
:101D2000449A4098419A0F900F900F90DF91CF9175
:101D30000F91FF90EF9008952B834A8389830E942F
:101D40005E1789814A812B81E1CF0F931F93CF9337
:101D5000DF938C01D62F442349F080E090E80E9465
:101D6000880D60E880E090E80E949A0DC5E0C80107
:101D70000E94880D6D2FC8010E949A0DD695C15002
:101D8000B1F7DF91CF911F910F9108951F93CF93DA
:101D9000DF93EC01162F6AEA85E595E50E94500D68
:101DA00065E58AEA9AE20E94500D60EA85E595E5CC
:101DB0000E94500D612FCE010E94500DCE010E9455
:101DC000880D182F0E945E17CE010E94880D1813EF
:101DD000F5CFDF91CF911F9108951F93CF93DF939C
:101DE000EC01162F6AEA85E595E10E94C40D65E5D0
:101DF0008AEA9AE00E94C40D60EA85E595E10E94B6
:101E0000C40D612FCE010E94C40DCE010E94B00D01
:101E1000182F0E945E17CE010E94B00D1813F5CF47
:101E2000DF91CF911F9108951F93CF93DF93EC0122
:101E3000162F40E065E080E090EC0E94A50E6AEA73
:101E400085E595E50E949A0D65E58AEA9AEA0E9481
:101E50009A0D60EA85E595E50E949A0D612FCE0105
:101E60000E949A0DCE010E94880D182F0E945E17C5
:101E7000CE010E94880D1813F5CFDF91CF911F91ED
:101E800008951F93CF93DF93EC01162F40E062E09B
:101E900080E090EA0E94A50E6AEA85E595E10E943D
:101EA000C40D65E58AEA9AE00E94C40D60EA85E502
:101EB00095E10E94C40D40E060919D0380E090EAAE
:101EC0000E94A50E612FCE010E94C40DCE010E947A
:101ED000B00D182F0E945E17CE010E94B00D18138E
:101EE000F5CFDF91CF911F9108951F93CF93DF938B
:101EF000EC01162F60E080919B0390919C030E945F
:101F00009A0D6AEA85E595E50E94500D65E58AEA35
:101F10009AE20E94500D60EA85E595E50E94500D19
:101F200090919D0320919B0330919C03692FA901FF
:101F3000490F511DCA010E949A0D612FCE010E94C6
:101F4000500DCE010E94880D182F0E945E17CE0101
:101F50000E94880D1813F5CFDF91CF911F9108953E
:101F60001F93CF93DF93EC01162F80919B039091E9
:101F70009C0362E002960E949A0D6AEA85E595E16B
:101F80000E94C40D80919B0390919C0361E0019697
:101F90000E949A0D65E58AEA9AE00E94C40D80913C
:101FA0009B0390919C0362E002960E949A0D60EA66
:101FB00085E595E10E94C40D90919D0320919B03BE
:101FC00030919C03692FA901490F511DCA010E943C
:101FD0009A0D612FCE010E94C40DCE010E94B00D5A
:101FE000182F0E945E17CE010E94B00D1813F5CF76
:101FF000DF91CF911F9108951F93CF93DF93EC0151
:10200000162F6AEA85E595ED0E949A0D65E58AEA44
:102010009AEA0E949A0D60EA85E595ED0E949A0D74
:10202000612FCE010E949A0D60E080E090E80E944E
:102030009A0DCE010E94880D182F0E945E17CE01C6
:102040000E94880D1813F5CFDF91CF911F9108954D
:102050001F93CF93DF93EC01162F6AEA85E595E194
:102060000E94C40D65E58AEA9AE10E94C40D60EA07
:1020700085E595E10E94C40D612FCE010E94C40D3B
:10208000CE010E94B00D182F0E945E17CE010E9453
:10209000B00D1813F5CFDF91CF911F9108951F93C5
:1020A000CF93DF93EC01162F6AEA8AEA9AEF0E9437
:1020B0009A0D65E585E595EF0E949A0D60EA8AEA3A
:1020C0009AEF0E949A0D612FCE010E949A0D6091A5
:1020D0009D0380E090EA0E949A0DCE010E94880D37
:1020E000182F0E945E17CE010E94880D1813F5CF9D
:1020F000DF91CF911F9108951F93CF93DF93EC0150
:10210000162F6AE080E090EB0E949A0D6AE080E072
:1021100090EC0E949A0D6AEA85E595E10E94C40D53
:1021200065E58AEA9AE00E94C40D60EA85E595E1DA
:102130000E94C40D60919D0380E090EB0E949A0D77
:1021400060919D0380E090EC0E949A0D612FCE017A
:102150000E94C40DCE010E94B00D182F0E945E1780
:10216000CE010E94B00D1813F5CFDF91CF911F91D2
:1021700008950F931F93CF93DF938C01D62FC091B7
:102180009D03C295C07F80919B0390919C0360E268
:1021900080960E949A0D6AEA85E595E10E94C40D39
:1021A00080919B0390919C0360E140960E949A0D60
:1021B00065E58AEA9AE00E94C40D80919B039091A4
:1021C0009C0360E280960E949A0D60EA85E595E1A5
:1021D0000E94C40D80919B0390919C036C2F8C0FE7
:1021E000911D0E949A0D6D2FC8010E94C40DC80157
:1021F0000E94B00DC82F0E945E17C8010E94B00D4A
:10220000C813F5CFDF91CF911F910F9108950F93D0
:102210001F93CF93C82FCA018901CD3009F486C01E
:1022200060F5C63009F466C0A0F4C23009F469C094
:1022300040F4CC2309F457C0C13009F45FC0C0EAB0
:1022400054C0C43009F460C0C530C9F70E94EA0D1B
:1022500053C0C93009F461C040F4C73009F46CC000
:10226000C83069F70E94281047C0CB3009F461C01C
:1022700008F456C00E94B9103FC0C13209F448C0EA
:10228000A0F4C03109F45BC040F4CE3009F44BC077
:10229000CF30A9F60E94410F2FC0C13109F452C0BE
:1022A000C03269F640939D0327C0C23809F455C077
:1022B00058F4C03809F449C0C13809F621E0F801E2
:1022C00020830E94880D46C0C53809F44CC0C6382A
:1022D00009F44FC0C43809F0B2CF21E0F8012083DF
:1022E0000E94D80D37C00E94500D8C2FCF911F91A6
:1022F0000F9108950E945F0DC0E0F7CF0E94C40DBA
:10230000FBCF0E949A0DF8CF40E00E94A50EF4CFBB
:1023100040939B0390939C03EFCF0E94C60EECCF9B
:102320000E94ED0EE9CF0E94140FE6CF0E94750FB8
:10233000E3CF0E94B00FE0CF0E94FC0FDDCF0E94E0
:102340004F10DACF0E947C10D7CF21E0F801208314
:102350000E946D0DF8018183CFCF21E0F801208329
:102360000E94B00DF7CF81E0F901808380919D0339
:10237000F2CF82E0F901808380919B038183809179
:102380009C038283B9CFCF93DF93FB01DC011296CC
:102390002C91222329F0203479F082ED808308C02B
:1023A0001082A0910201B0910301EC018C818C9309
:1023B000CF01DF91CF910895108281E08183A091B8
:1023C0000201B09103018C918283F2CFE09102016E
:1023D000F091030180830895E0910201F0910301DF
:1023E000808108950F931F93D901082F10E00831C1
:1023F000110508F0C2C2F801E050FE4E0C94BC1961
:102400003A1218127512D0121C136813B4135F1409
:10241000641469146C14701473147B14831487147B
:102420008A148E1497149E14A214AA14B114B5140D
:102430004631510508F0A3C2FA01EF5DFD4E0C9440
:10244000BC1937123D124112451249124D12511258
:10245000551259125D126112651269126D12BF1484
:10246000BF14BF14BF14BF14BF14BF147112389827
:10247000409A80E01F910F9108953998419A80E029
:10248000F9CF3A98429A80E0F5CF3B98439A80E0A2
:10249000F1CF3C98449A80E0EDCF3D98459A80E09A
:1024A000E9CF3E98469A80E0E5CF3F98479A80E092
:1024B000E1CF5098589A80E0DDCF5198599A80E04A
:1024C000D9CF53985B9A80E0D5CF55985D9A80E03C
:1024D000D1CF56985E9A80E0CDCF57985F9A80E032
:1024E000C9CF5098589A80E0C5CF4631510508F0C1
:1024F00048C2FA01E258FD4E0C94BC19941298128D
:102500009C12A012A412A812AC12B012B412B812EB
:10251000BC12C012C412C812C114C114C114C11417
:10252000C114C114C114CC123898409880E0A2CFD5
:102530003998419880E09ECF3A98429880E09ACFAF
:102540003B98439880E096CF3C98449880E092CFA7
:102550003D98459880E08ECF3E98469880E08ACF9F
:102560003F98479880E086CF5098589880E082CF77
:102570005198599880E07ECF53985B9880E07ACF4D
:1025800055985D9880E076CF56985E9880E072CF3F
:1025900057985F9880E06ECF5098589880E06ACF47
:1025A0004631510508F0EFC1FA01E752FD4E0C9497
:1025B000BC19EF12F212F512F812FB12FE120113FF
:1025C000041307130A130D13101313131613C31454
:1025D000C314C314C314C314C314C3141913389AF3
:1025E00080E048CF399A80E045CF3A9A80E042CFE8
:1025F0003B9A80E03FCF3C9A80E03CCF3D9A80E020
:1026000039CF3E9A80E036CF3F9A80E033CF509A60
:1026100080E030CF519A80E02DCF539A80E02ACFCE
:10262000559A80E027CF569A80E024CF579A80E0D1
:1026300021CF509A80E01ECF4631510508F0A5C148
:10264000FA01EB5DFC4E0C94BC193B133E13411395
:10265000441347134A134D1350135313561359136E
:102660005C135F136213C514C514C514C514C514D7
:10267000C514C5146513409880E0FCCE419880E0F5
:10268000F9CE429880E0F6CE439880E0F3CE4498AD
:1026900080E0F0CE459880E0EDCE469880E0EACE2E
:1026A000479880E0E7CE589880E0E4CE599880E0E3
:1026B000E1CE5B9880E0DECE5D9880E0DBCE5E9878
:1026C00080E0D8CE5F9880E0D5CE589880E0D2CE1A
:1026D0004631510508F05BC1FA01EF58FC4E0C94ED
:1026E000BC1987138A138D139013931396139913A0
:1026F0009C139F13A213A513A813AB13AE13C714F7
:10270000C714C714C714C714C714C714B113409A09
:1027100080E0B0CE419A80E0ADCE429A80E0AACE71
:10272000439A80E0A7CE449A80E0A4CE459A80E008
:10273000A1CE469A80E09ECE479A80E09BCE589AE2
:1027400080E098CE599A80E095CE5B9A80E092CE58
:102750005D9A80E08FCE5E9A80E08CCE5F9A80E0BA
:1027600089CE589A80E086CE82E08C93463151051E
:1027700008F0A2C0FA01E154FC4E0C94BC19D51328
:10278000DE13E713F013F91302140B1414141D14C1
:1027900026142F14381441144A145C145C145C146D
:1027A0005C145C145C145C14531486B18170119633
:1027B0008C93119712961C9280E05CCE86B1827049
:1027C00090E012969C938E93119780E053CE86B141
:1027D000847090E012969C938E93119780E04ACE7D
:1027E00086B1887090E012969C938E93119780E04A
:1027F00041CE86B1807190E012969C938E93119792
:1028000080E038CE86B1807290E012969C938E93D1
:10281000119780E02FCE86B1807490E012969C9341
:102820008E93119780E026CE86B1807890E0129644
:102830009C938E93119780E01DCE89B18170119683
:102840008C93119712961C9280E014CE89B18270FD
:1028500090E012969C938E93119780E00BCE89B1F5
:10286000887090E012969C938E93119780E002CE30
:1028700089B1807290E012969C938E93119780E0BC
:10288000F9CD89B1807490E012969C938E93119744
:1028900080E0F0CD89B1807890E012969C938E9381
:1028A000119780E0E7CD89B1817011968C931197D3
:1028B00012961C9280E0DECD1C928DE8DBCD14B820
:1028C0008FEF85B980E0D6CD14B88FEF85B980E061
:1028D000D1CD14B880E0CECD8FEF84B980E0CACDE1
:1028E00045B980E0C7CD83B111968C93119781E0F3
:1028F0008C9380E0BFCD14B88FEF85B93F9A47988D
:1029000081B980E0B7CD8FEF82B980E0B3CD11B847
:1029100080E0B0CD8FEF81B980E0ACCD42B98FEFD0
:1029200084B955B9479A479814B880E0A3CD14B834
:102930008FEF85B9579A5F9880E09CCD57985F9A42
:1029400080E098CD8FEF84B945B95F9A5F9814B84D
:1029500080E090CD14B88FEF85B9579A5F9880E0EA
:1029600089CD57985F9A80E085CD8FEF84B945B9BE
:102970005F9A5F9814B880E07DCD8CE87BCD8DE8C0
:1029800079CD8DE877CD8DE875CD8DE873CD8DE867
:1029900071CD882321F0813041F480E0089591E0E9
:1029A000F90190839AEA9183089581EB08958AEA68
:1029B0000895089582B98FEF84B995B9479A4798D9
:1029C00014B8611101C04198449800000000000053
:1029D00000000000000000000000000000000000F7
:1029E0000000000083B1449A419A089582B98FEFA4
:1029F00084B995B9479A479814B884B965B9459888
:102A0000411101C0419800000000000000000000DA
:102A1000000000000000459A419A14B808959FEF05
:102A200094B985B94598611101C041980000000032
:102A300000000000459A419A14B80895CF92DF92A1
:102A4000EF920F93CF93DF9300D0CDB7DEB76C0139
:102A50008FEF84B965B9479A479814B844984111E3
:102A600001C0419822B980E0E1101FC000000000C1
:102A70000000000000000000000000000000000056
:102A800093B1F601E80FF11D90832F5F22B98F5F9C
:102A9000081750F7449A419A0F900F90DF91CF9109
:102AA0000F91EF90DF90CF9008952A8389830E9441
:102AB0005E1700000000000089812A81DBCF1F9390
:102AC000CF93DF93EC01162F40E06AEA85E595E5A8
:102AD0000E94F61440E065E58AEA9AE20E94F61444
:102AE00040E060EA85E595E50E94F61440E0612F3C
:102AF000CE010E94F61460E0CE010E94DA14182F75
:102B00000E945E1760E0CE010E94DA141813F3CF22
:102B1000DF91CF911F9108951F93CF93DF93EC0125
:102B2000162F40E06AEA8AEA9AE80E94F61440E02A
:102B300065E585E595E80E94F61440E060EA8AEADA
:102B40009AE80E94F61440E0612FCE010E94F6142C
:102B500060E0CE010E94DA14182F0E945E1760E038
:102B6000CE010E94DA141813F3CFDF91CF911F9199
:102B700008950F931F93CF93DF93782FCA01E90134
:102B8000072F10E00730110580F5F801E653FA4EE3
:102B90000C94BC19D115EA15DD15E415E715F115EE
:102BA000E2159FEF94B985B95F9A5F9814B8872FA3
:102BB000DF91CF911F910F91089540E00E94F6148C
:102BC00070E0F5CF41E0FACF0E945F15F9CF0E9487
:102BD0008C15F6CF21E0288360E00E94DA14898307
:102BE000EFCF21E0288361E0F8CF7AEAE0CF880FC9
:102BF000991F880F991F20E030E02817390709F442
:102C00000895000000002F5F3F4FF7CF20E030E035
:102C10002817390709F40895000000002F5F3F4F7F
:102C2000F7CFCF93DF9380E190E00E94F715C4E0E7
:102C3000D0E084EF91E00E94F71584EF91E00E94CC
:102C4000F7152197B1F7C4E0D0E08AEF90E00E9439
:102C5000F7158AEF90E00E94F7152197B1F7DF9101
:102C6000CF91089580E190E00C94F715CF93DF9316
:102C70001F92CDB7DEB7F901813171F038F48130A0
:102C8000C1F078F08230C9F082E80FC08132A9F03B
:102C9000823299F08231C1F782E080831282118200
:102CA0000AC089830E94111689810F90DF91CF910C
:102CB00008950E94321680E0F8CF81E0808311826F
:102CC000FACF482F90E0982F882720E0411103C0C9
:102CD00021118068089520953FEF340F4323F6CFEC
:102CE00080E090E0089580E0089560E070E0CB011E
:102CF0000895CF93DF931F92CDB7DEB7DC018FEF3E
:102D0000809307011092080187E091E09093C90336
:102D10008093C80316968C91169789831196EC912F
:102D200011974E2F50E0FA013197EB30F10508F082
:102D30009BC0E356F94E0C94BC19A816B816C616DB
:102D4000D4161A1734172B17E216F016FE160C17A6
:102D500014964D915C91159728E031E013966C9193
:102D6000139712968C910E94F211809307016EC006
:102D700014964D915C91159728E031E013966C9173
:102D8000139712968C910E946C0BEFCF14964D9175
:102D90005C91159728E031E013966C911397129689
:102DA0008C910E940711E1CF14964D915C9115977B
:102DB00028E031E013966C91139712968C910E9443
:102DC000B915D3CF14964D915C91159728E031E059
:102DD00013966C91139712968C910E943616C5CF5C
:102DE00014964D915C91159728E031E013966C9103
:102DF000139712968C910E94F00CB7CF14964D91B8
:102E00005C91159728E031E013966C911397129618
:102E10008C910E949500A9CF14964D915C911597C5
:102E200028E031E013966C91139712968C910E94D2
:102E300042039BCFAE014F5F5F4F67E071E0CD0172
:102E40000E947C019093C9038093C80389810F90ED
:102E5000DF91CF910895AE014F5F5F4F67E071E062
:102E6000CD010E94C311EECF80E87FCFE0916903CE
:102E7000F0916A03278144815581322F360F231345
:102E800012C0E0916903F0916A038781860F8783FE
:102E900080913801861B8093380181110DC088E92B
:102EA000838381E00895FC017191CF01FA01E20F63
:102EB000F11D70832F5FE3CF80E00895CF93DF9300
:102EC0006091CA03635067FD91C08091C703CCE055
:102ED000D0E0C81BD109C253DC4F8091C6038D32AC
:102EE00009F0CFC0683009F07FC083EC8093BA034B
:102EF0008AE58093050110920F018881807679F030
:102F0000CE010E9479168F3F09F466C09F8191110E
:102F100069C09E81981708F065C0892F63C02A8117
:102F20001092C303998191110AC01092C40323EC3B
:102F300033E082E03093C9032093C803E7CF953094
:102F400029F42093CB0323EC33E0F4CF963099F5AA
:102F50009B81913059F48EE890E09093C90380935F
:102F6000C80382E190E490930F01D0CF923019F41E
:102F70008CE790E0F2CF9330A9F7211108C088EEDA
:102F800090E09093C9038093C80384E0EBCF213095
:102F900041F48EEB90E09093C9038093C8038AE2DA
:102FA000E1CF2230F9F680EA90E09093C903809354
:102FB000C8038EE1D7CF983059F0993019F4209397
:102FC000CD03C1CF81E09A3009F4BDCF80E0BBCF03
:102FD0002DEC33E081E0AECF988197FD8E8190E8B3
:102FE00090930F01809304011092CA038091050110
:102FF00084FF3AC0809104018F3FB1F1C82F89301E
:1030000008F0C8E08C1B809304018091BA0398E813
:1030100089278093BA03CC23D1F08091C803909183
:10302000C90320910F0126FF3FC0ABEBB3E0FC01C9
:103030002C2F34913D9331962150D9F701962FEFE3
:103040002C0F820F911D9093C9038093C8036C2F9E
:103050008BEB93E00E947918CC5FCC3019F08FEFA6
:1030600080930401C093050184E199B1947131F416
:103070008150D9F71092CB031092C503DF91CF9105
:10308000089580910F0187FFAFCFCE010E943617C0
:103090008F3F21F48EE180930501A6CF882309F4A8
:1030A000A3CF10920401A0CFEBEBF3E0DC012C2FB7
:1030B0003D9131932150E1F7C1CFE9E6F0E0808105
:1030C00082608083E89A0895A82FB92F80E090E06D
:1030D00041E050EA609530E009C02D918227979534
:1030E000879510F084279527305EC8F36F5FA8F3AB
:1030F0000895EADF8D939D930895CF93CFB7CF9333
:10310000DF93C3954C9BE9F74C9B0BC04C9B09C0CC
:103110004C9B07C04C9B05C04C9B03C04C9B01C003
:1031200089C06F93C091C703DD27C253DC4F2F9333
:1031300065E54C9B03C02F916F91E6CF0F931F93D2
:103140004F9320E040E15F9309B1047104FB27F93C
:103150003F9350E03BE039C0147140642F77012F5A
:103160005F5F1EC0406819B114712F7752501FC0A5
:10317000406409B12F770471D1F15F5F00C023C0B3
:10318000406219B12F77147191F15F5F00C025C0C3
:1031900004711027515012F45D5F00001150279503
:1031A0002C3F19B1C8F614710127015027952C3F07
:1031B000C8F64227499309B1047110274F73115083
:1031C00027952C3FA8F64695469519B1147179F0CC
:1031D0000127015027952C3F98F66B5A60F3315028
:1031E00009B1B0F600C011E01CBB002717C03B506E
:1031F0003195C31BD04011E01CBB0881033CF9F0A2
:103200000B34E9F02091C5031981110F1213EDCF92
:10321000093651F10D3211F0013E39F70093CC031C
:103220003F915F914F911F910F912F916F91CCB36F
:10323000C0FD67CFDF91CF91CFBFCF91189520917F
:10324000CC03222369F31091CA03112339F53430DA
:103250003AF13093CA032093C6031091C7033BE0B1
:10326000311B3093C7031CC00091CA030130B4F472
:103270000AE53091050134FD14C000930501CAEB45
:10328000D3E013C0052710E000C000000BB91AC03E
:10329000052710E0221F1DC010E021C04AE502C032
:1032A00032ED432FC4E1D0E032E01AB114615C9AF0
:1032B0000BB11AB954E120E865E320FF05270BB9EB
:1032C000279517951C3FF0F66695B8F7B1F720FFE4
:1032D00005270BB9279517951C3FD0F6279517950D
:1032E00017FF052700001C3F0BB9B0F629913A954E
:1032F00019F70B7E1091CB03110FC651D0400BB9BB
:1033000011F01093C50311E01CBB00611AB11B7EC4
:10331000402F4B7E54E05A95F1F70BB91AB94BB9CF
:103320007FCF9EE088E10FB6F894A8958093600067
:103330000FBE909360000E945D18549A80E0815007
:1033400099F4549878940E94A30A80EF80936C03B8
:10335000A8950E945E170E94AB0280916C03803F8B
:10336000B9F30E947F0CF4CFA895EFE9FFE0319705
:10337000F1F700C00000E3CFEE0FFF1F0590F491BE
:08338000E02D0994F894FFCF41
:0633880069019E03FF5ADB
:00000001FF

File diff suppressed because it is too large Load Diff

View File

@ -10,13 +10,9 @@ uint8_t dump_buff( buffer *buff ) {
uint8_t addrH = buff->page_num; //A15:8 while accessing page
uint8_t bank;
//warn uint8_t addrX; //A23:16 while accessing page
//TODO use mapper to set mapper controlled address bits
//use mem_type to set addrH/X as needed for dump loop
//also use to get read function pointer
switch ( buff->mem_type ) {
// #ifdef NES_CONN
case NESCPU_4KB:
//mapper lower nibble specifies NES CPU A12-15
if (buff->mapper > 0x0F) {
@ -58,55 +54,29 @@ uint8_t dump_buff( buffer *buff ) {
buff->cur_byte = nes_ppu_page_rd_poll( buff->data, addrH, buff->id,
buff->last_idx, ~FALSE );
break;
// #endif
// #ifdef SNES_CONN
case SNESROM_PAGE: //ROMSEL is always taken low
//mapper byte specifies SNES CPU A15-8
addrH |= (buff->mapper); //no shift needed
buff->cur_byte = snes_rom_page_rd_poll( buff->data, addrH, buff->id,
buff->cur_byte = snes_page_rd_poll( buff->data, addrH, 0, buff->id,
//id contains MSb of page when <256B buffer
buff->last_idx, ~FALSE );
break;
case SNESSYS_PAGE: //ROMSEL stays high
//mapper byte specifies SNES CPU A15-8
addrH |= (buff->mapper); //no shift needed
buff->cur_byte = snes_page_rd_poll( buff->data, addrH, 1, buff->id,
//id contains MSb of page when <256B buffer
buff->last_idx, ~FALSE );
break;
// #endif
// #ifdef NES_CONN
case PRGROM:
addrH |= 0x80; //$8000
if (buff->mapper == MMC1) {
//write bank value to bank table
//page_num shift by 6 bits A15 >> A9(1)
bank = (buff->page_num)>>6;
bank &= 0x0F; //only 4 bits in PRG
//LSb doesn't matter in 32KB mode
mmc1_wr(0x8000, 0x10, 1); //write bank to PRG-ROM bank register
mmc1_wr(0xE000, bank, 0); //write bank to PRG-ROM bank register
//TODO SXROM/SUROM require writting PRG-ROM MSb of address to CHR registers
}
if (buff->mapper == UxROM) {
//addrH &= 0b1011 1111 A14 must always be low
addrH &= 0xBF;
//write bank value to bank table
//page_num shift by 6 bits A14 >> A8(0)
bank = (buff->page_num)>>6;
//Nomolos bank table @ CC84
//nes_cpu_wr( (0xCC84+bank), bank );
//Owlia bank table @ CC84
//nes_cpu_wr( (0xE473+bank), bank );
//Rushnattack
//nes_cpu_wr( (0x8000+bank), bank );
//twindragons
//nes_cpu_wr( (0xC000+bank), bank );
//h1
//nes_cpu_wr( (0xFFC0+bank), bank );
//AFB
nes_cpu_wr( (0xFD69+bank), bank );
buff->cur_byte = nes_cpu_page_rd_poll( buff->data, addrH, buff->id,
//id contains MSb of page when <256B buffer
buff->last_idx, ~FALSE );
break;
}
//if (buff->mapper == MMC3) {
// THIS IS HANDLED from the host side using NESCPU_4KB
//}
if (buff->mapper == MAP30) {
//addrH &= 0b1011 1111 A14 must always be low
addrH &= 0xBF;
@ -121,18 +91,6 @@ uint8_t dump_buff( buffer *buff ) {
buff->last_idx, ~FALSE );
break;
}
//if ((buff->mapper == BxROM) || (buff->mapper == CDREAM)) {
// //write bank value to bank table
// //page_num shift by 7 bits A15 >> A8(0)
// bank = (buff->page_num)>>7;
// //Lizard bank table @ FF94
// nes_cpu_wr( (0xFF94+bank), bank );
// //HH85
// //nes_cpu_wr( (0xFFE0+bank), bank );
// //Mojon bank table @ FF94
// //nes_cpu_wr( 0x800C, 0x00); //select first bank (only one with table)
// //nes_cpu_wr( (0xCC43+bank), bank ); //then select desired bank
//}
if (buff->mapper == A53) {
//write bank value to bank table
//page_num shift by 7 bits A15 >> A8(0)
@ -159,44 +117,6 @@ uint8_t dump_buff( buffer *buff ) {
break;
case CHRROM: //$0000
//if (buff->mapper == NROM) {
// buff->cur_byte = nes_ppu_page_rd_poll( buff->data, addrH, buff->id,
// buff->last_idx, ~FALSE );
//}
//if (buff->mapper == MMC3) {
// THIS IS HANDLED from the host side using NESPPU_4KB
//}
//if (buff->mapper == CNROM) {
// //select bank
// //8KB banks $0000-1FFF
// //page_num shift by 5 bits A13 >> A8(0)
// bank = (buff->page_num)>>5;
// //write bank to register
// //TODO account for bus conflicts
// nes_cpu_wr(0x8000, bank);
//
// addrH &= 0x1F; //only A12-8 are directly addressable
// buff->cur_byte = nes_ppu_page_rd_poll( buff->data, addrH, buff->id,
// buff->last_idx, ~FALSE );
//}
//if (buff->mapper == CDREAM) {
// //select bank
// //8KB banks $0000-1FFF
// //page_num shift by 5 bits A13 >> A8(0)
// bank = (buff->page_num)>>5;
// //write bank to register
// //TODO account for bus conflicts
// nes_cpu_wr(0xFFFF, bank<<4);
//
// addrH &= 0x1F; //only A12-8 are directly addressable
// buff->cur_byte = nes_ppu_page_rd_poll( buff->data, addrH, buff->id,
// buff->last_idx, ~FALSE );
//}
if (buff->mapper == DPROM) {
//select bank
@ -211,28 +131,16 @@ uint8_t dump_buff( buffer *buff ) {
buff->cur_byte = nes_dualport_page_rd_poll( buff->data, addrH, buff->id,
buff->last_idx, ~FALSE );
}
if (buff->mapper == MMC1) {
//write bank value to bank table
//page_num shift by 4 bits A12 >> A8(0)
bank = (buff->page_num)>>4;
bank &= 0x1F; //only 5 bits in CHR regs
//LSb doesn't matter in 32KB mode
mmc1_wr(0x8000, 0x10, 1); //set to 4KB bank mode
mmc1_wr(0xA000, bank, 0); //write bank to CHR-ROM bank register
//TODO SXROM/SUROM require writting PRG-ROM MSb of address to CHR registers
addrH &= 0x0F; //only A11-8 are directly addressable
buff->cur_byte = nes_ppu_page_rd_poll( buff->data, addrH, buff->id,
buff->last_idx, ~FALSE );
}
break;
case PRGRAM:
addrH |= 0x60; //$6000
buff->cur_byte = nes_cpu_page_rd_poll( buff->data, addrH, buff->id,
buff->last_idx, ~FALSE );
break;
// #endif
// #ifdef SNES_CONN
case SNESROM:
if (buff->mapper == LOROM) {
addrH |= 0x80; //$8000 LOROM space
@ -251,12 +159,12 @@ uint8_t dump_buff( buffer *buff ) {
bank = ((((buff->page_num)>>8) | 0x40) & 0x7F);
}
HADDR_SET( bank );
buff->cur_byte = snes_rom_page_rd_poll( buff->data, addrH, buff->id,
buff->cur_byte = snes_page_rd_poll( buff->data, addrH, 0, buff->id,
//id contains MSb of page when <256B buffer
buff->last_idx, ~FALSE );
case SNESRAM:
//warn addrX = ((buff->page_num)>>8);
break;
// #endif
default:
return ERR_BUFF_UNSUP_MEM_TYPE;
}

View File

@ -20,89 +20,44 @@ uint8_t write_page( uint8_t addrH, buffer *buff, write_funcptr wr_func )
return SUCCESS;
}
uint8_t write_page_old( uint8_t bank, uint8_t addrH, uint16_t unlock1, uint16_t unlock2, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
//only used by cninja currently..
uint8_t write_page_cninja( uint8_t bank, uint8_t addrH, uint16_t unlock1, uint16_t unlock2, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
while ( cur <= buff->last_idx ) {
//write unlock sequence
wr_func( unlock1, 0xAA );
wr_func( unlock2, 0x55 );
wr_func( unlock1, 0xA0 );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//retry if write failed
//this helped but still seeing similar fails to dumps
// if (read == buff->data[n]) {
n++;
cur++;
// LED_IP_PU();
// LED_LO();
// } else {
// nes_cpu_wr(0x5000, 0x81); //outer reg select mode
// nes_cpu_wr(0x8000, bank); //outer bank
// nes_cpu_wr(0x5000, 0x00); //chr reg select act like cnrom
// LED_OP();
// LED_HI();
// }
}
buff->cur_byte = n;
return SUCCESS;
}
uint8_t write_page_bank( uint8_t bank, uint8_t addrH, uint16_t unlock1, uint16_t unlock2, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
//only used by MM2 currently
uint8_t write_page_mm2( uint8_t bank, uint8_t addrH, uint16_t unlock1, uint16_t unlock2, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
while ( cur <= buff->last_idx ) {
//select first bank for unlock sequence
//needs to be written to bank table!
// nes_cpu_wr( (0xCC84), 0x00 );
// nes_cpu_wr( (0xE473), 0x00 );
// nes_cpu_wr( (0xC000), 0x00 );
nes_cpu_wr( (0xFD69), 0x00 );
//wr_func( 0x5555, 0xAA );
wr_func( unlock1, 0xAA );
//wr_func( 0x2AAA, 0x55 );
wr_func( unlock2, 0x55 );
//wr_func( 0x5555, 0xA0 );
wr_func( unlock1, 0xA0 );
//now need to select bank for the actual write!
//but this write can't be applied to the PRG-ROM
// nes_cpu_wr( (0xCC84+bank), bank );
// nes_cpu_wr( (0xE473+bank), bank );
// nes_cpu_wr( (0x8000+bank), bank );
//nes_cpu_wr( (0xC000+bank), bank );
// nes_cpu_wr( (0xFFC0+bank), bank );
nes_cpu_wr( (0xFD69+bank), bank );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//retry if write failed
//this helped but still seeing similar fails to dumps
if (read == buff->data[n]) {
n++;
cur++;
@ -112,26 +67,19 @@ uint8_t write_page_bank( uint8_t bank, uint8_t addrH, uint16_t unlock1, uint16_t
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
return SUCCESS;
}
uint8_t write_page_bank_map30( uint8_t bank, uint8_t addrH, uint16_t unlock1, uint16_t unlock2, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
while ( cur <= buff->last_idx ) {
//select first bank for unlock sequence
//wr_func( 0x5555, 0xAA );
nes_cpu_wr( 0xC000, 0x01 );
wr_func( unlock1, 0xAA );
@ -144,17 +92,12 @@ uint8_t write_page_bank_map30( uint8_t bank, uint8_t addrH, uint16_t unlock1, ui
//now need to select bank for the actual write!
nes_cpu_wr( 0xC000, bank );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//retry if write failed
//this helped but still seeing similar fails to dumps
if (read == buff->data[n]) {
n++;
cur++;
@ -166,78 +109,21 @@ uint8_t write_page_bank_map30( uint8_t bank, uint8_t addrH, uint16_t unlock1, ui
}
}
buff->cur_byte = n;
return SUCCESS;
}
uint8_t write_page_mmc1( uint8_t bank, uint8_t addrH, uint16_t unlock1, uint16_t unlock2, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
while ( cur <= buff->last_idx ) {
mmc1_wr(0x8000, 0x10, 0); //32KB mode
//IDK why, but somehow only the first byte gets programmed when ROM A14=1
//so somehow it's getting out of 32KB mode for follow on bytes..
//even though we reset to 32KB mode after the corrupting final write
wr_func( unlock1, 0xAA );
wr_func( unlock2, 0x55 );
wr_func( unlock1, 0xA0 );
wr_func( ((addrH<<8)| n), buff->data[n] );
//writes to flash are to $8000-FFFF so any register could have been corrupted and shift register may be off
//In reality MMC1 should have blocked all subsequent writes, so maybe only the CHR reg2 got corrupted..?
mmc1_wr(0x8000, 0x10, 1); //32KB mode
mmc1_wr(0xE000, bank, 0); //reset shift register, and bank register
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//retry if write failed
//this helped but still seeing similar fails to dumps
if (read == buff->data[n]) {
n++;
cur++;
LED_IP_PU();
LED_LO();
} else {
mmc1_wr(0x8000, 0x10, 1); //32KB mode
mmc1_wr(0xE000, bank, 0); //reset shift register, and bank register
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
return SUCCESS;
}
uint8_t write_page_a53( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
//enter unlock bypass mode
wr_func( 0x8AAA, 0xAA );
wr_func( 0x8555, 0x55 );
wr_func( 0x8AAA, 0x20 );
while ( cur <= buff->last_idx ) {
//TODO FIX THIS! It shouldn't be needed!
//but for some reason the mapper is loosing it's setting for $5000 register to
//permit flash writes. Many writes go through, but at somepoint it gets lost..
@ -247,18 +133,13 @@ uint8_t write_page_a53( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr
//AVR didn't need this patch so maybe is a speed issue
//stmadapter didn't have problems either..
//added time delay before m2 rising edge and it didn't change anything for stm6
// curaddresswrite( 0xA0 ); //gained ~3KBps (59.13KBps) inl6 with v3.0 proto
wr_func( ((addrH<<8)| n), 0xA0 );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//retry if write failed
//this helped but still seeing similar fails to dumps
if (read == buff->data[n]) {
@ -274,20 +155,14 @@ uint8_t write_page_a53( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
//exit unlock bypass mode
wr_func( 0x8000, 0x90 );
wr_func( 0x8000, 0x00 );
//reset the flash chip, supposed to exit too
wr_func( 0x8000, 0xF0 );
return SUCCESS;
}
uint8_t write_page_tssop( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
@ -295,26 +170,18 @@ uint8_t write_page_tssop( uint8_t bank, uint8_t addrH, buffer *buff, write_funcp
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
//enter unlock bypass mode
wr_func( 0x8AAA, 0xAA );
wr_func( 0x8555, 0x55 );
wr_func( 0x8AAA, 0x20 );
while ( cur <= buff->last_idx ) {
// curaddresswrite( 0xA0 ); //gained ~3KBps (59.13KBps) inl6 with v3.0 proto
wr_func( ((addrH<<8)| n), 0xA0 );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//retry if write failed
//this helped but still seeing similar fails to dumps
if (read == buff->data[n]) {
@ -330,173 +197,32 @@ uint8_t write_page_tssop( uint8_t bank, uint8_t addrH, buffer *buff, write_funcp
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
//exit unlock bypass mode
wr_func( 0x8000, 0x90 );
wr_func( 0x8000, 0x00 );
//reset the flash chip, supposed to exit too
wr_func( 0x8000, 0xF0 );
return SUCCESS;
}
uint8_t write_page_chr( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
while ( cur <= buff->last_idx ) {
//write unlock sequence
wr_func( 0x1555, 0xAA );
wr_func( 0x0AAA, 0x55 );
wr_func( 0x1555, 0xA0 );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//TODO verify byte is value that was trying to be flashed
//move on to next byte
//n++;
//cur++;
if (read == buff->data[n]) {
n++;
cur++;
LED_IP_PU();
LED_LO();
} else {
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
return SUCCESS;
}
uint8_t write_page_chr_cnrom( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
while ( cur <= buff->last_idx ) {
//write unlock sequence
nes_cpu_wr( 0x8000, 0x02 );
wr_func( 0x1555, 0xAA );
nes_cpu_wr( 0x8000, 0x01 );
wr_func( 0x0AAA, 0x55 );
nes_cpu_wr( 0x8000, 0x02 );
wr_func( 0x1555, 0xA0 );
nes_cpu_wr( 0x8000, bank );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
nes_cpu_wr( 0x8000, bank );
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//TODO verify byte is value that was trying to be flashed
//move on to next byte
//n++;
//cur++;
if (read == buff->data[n]) {
// n++;
// cur++;
LED_IP_PU();
LED_LO();
} else {
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
return SUCCESS;
}
uint8_t write_page_chr_cdream( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
while ( cur <= buff->last_idx ) {
//write unlock sequence
nes_cpu_wr(0x8000, 0x20);
wr_func( 0x1555, 0xAA );
nes_cpu_wr(0x8000, 0x10);
wr_func( 0x0AAA, 0x55 );
nes_cpu_wr(0x8000, 0x20);
wr_func( 0x1555, 0xA0 );
nes_cpu_wr(0x8000, bank<<4);
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//TODO verify byte is value that was trying to be flashed
//move on to next byte
//n++;
//cur++;
if (read == buff->data[n]) {
n++;
cur++;
LED_IP_PU();
LED_LO();
} else {
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
return SUCCESS;
}
uint8_t write_page_dualport( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
//enter unlock bypass mode
wr_func( 0x0AAA, 0xAA );
wr_func( 0x0555, 0x55 );
wr_func( 0x0AAA, 0x20 );
while ( cur <= buff->last_idx ) {
wr_func( ((addrH<<8)| n), 0xA0 );
wr_func( ((addrH<<8)| n), buff->data[n] );
do {
usbPoll();
read = rd_func((addrH<<8)|n);
} while( read != rd_func((addrH<<8)|n) );
//TODO verify byte is value that was trying to be flashed
//move on to next byte
@ -511,21 +237,14 @@ uint8_t write_page_dualport( uint8_t bank, uint8_t addrH, buffer *buff, write_fu
LED_OP();
LED_HI();
}
}
buff->cur_byte = n;
//exit unlock bypass mode
wr_func( 0x0000, 0x90 );
wr_func( 0x0000, 0x00 );
//reset the flash chip, supposed to exit too
wr_func( 0x0000, 0xF0 );
return SUCCESS;
}
//#define PRGM_MODE() swim_wotf(SWIM_HS, 0x500F, 0x40)
@ -535,71 +254,45 @@ uint8_t write_page_dualport( uint8_t bank, uint8_t addrH, buffer *buff, write_fu
#define PRGM_MODE() NOP()
#define PLAY_MODE() NOP()
uint8_t write_page_snes( uint8_t bank, uint8_t addrH, buffer *buff, write_funcptr wr_func, read_funcptr rd_func )
uint8_t write_page_snes( uint8_t bank, uint8_t addrH, buffer *buff, write_snes_funcptr wr_func, read_snes_funcptr rd_func )
{
uint16_t cur = buff->cur_byte;
uint8_t n = buff->cur_byte;
uint8_t read;
#ifdef AVR_CORE
wdt_reset();
#endif
//set to program mode for first entry
//EXP0_LO();
//swim_wotf(SWIM_HS, 0x500F, 0x40)
PRGM_MODE();
//; TODO I don't think all these NOPs are actually needed, but they work and don't seem to significantly affect program time on stm32
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
//enter unlock bypass mode
wr_func( 0x8AAA, 0xAA );
wr_func( 0x8555, 0x55 );
wr_func( 0x8AAA, 0x20 );
wr_func( 0x8AAA, 0xAA, 0 );
wr_func( 0x8555, 0x55, 0 );
wr_func( 0x8AAA, 0x20, 0 );
while ( cur <= buff->last_idx ) {
//write unlock sequence
//unlocked wr_func( 0x0AAA, 0xAA );
//unlocked wr_func( 0x0555, 0x55 );
//wr_func( 0x0000, 0xA0 );
snes_rom_wr_cur_addr( 0xA0 ); //gained ~3KBps (59.13KBps) inl6 with v3.0 proto
wr_func( ((addrH<<8)| n), buff->data[n] );
snes_wr_cur_addr( 0xA0, 0 ); //gained ~3KBps (59.13KBps) inl6 with v3.0 proto
wr_func( ((addrH<<8)| n), buff->data[n], 0 );
//wr_func( ((addrH<<8)| n), cur_data ); //didn't actually speed up
//Targetting 2MByte 16mbit flash which doesn't have buffered writes
//currently have average flash speed of 21.05KBps going to start removing some of these NOPs
//and optimizing flash routine to get time down.
//exit program mode
// EXP0_HI();
PLAY_MODE();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
//pre-fetch next byte of data
//cur_data = buff->data[n+1];
#ifdef AVR_CORE
wdt_reset();
#endif
//wait for byte to flash
// do {
// usbPoll();
@ -610,73 +303,33 @@ uint8_t write_page_snes( uint8_t bank, uint8_t addrH, buffer *buff, write_funcpt
//this can cause things to hang on failed programs..
//need a smarter flash polling algo, kind of a pain because we don't have
//a good way to toggle /OE or /CE quickly on v3 SNES boards
usbPoll();
read = rd_func((addrH<<8)|n);
read = rd_func((addrH<<8)|n, 0);
//prepare for upcoming write cycle, or allow for a polling read
//EXP0_LO();
PRGM_MODE();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
//First check if already outputting final data
if (read != buff->data[n] ) {
//if not, lets see if toggle is occuring
//EXP0_HI();
PLAY_MODE();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
while( read != rd_func((addrH<<8)|n) ){
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
while( read != rd_func((addrH<<8)|n, 0) ){
//EXP0_LO();
PRGM_MODE();
NOP(); NOP(); NOP(); NOP();
NOP(); NOP(); NOP(); NOP();
NOP(); NOP(); NOP(); NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
//EXP0_HI();
PLAY_MODE();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
read = rd_func((addrH<<8)|n);
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
read = rd_func((addrH<<8)|n, 0);
}
//prepare for upcoming write cycle
//EXP0_LO();
PRGM_MODE();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP();
NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP(); NOP();
}
// //IDK why, but AVR will exit early sometimes
// //without this second check, ~20 errors per 32KByte on SNES v3.0
// //All error bytes are 0xFF instead of true data
@ -689,7 +342,6 @@ uint8_t write_page_snes( uint8_t bank, uint8_t addrH, buffer *buff, write_funcpt
// //Ahh this is the issue, adding the code below only adds delay which gives flash
// //enough time to complete write.
//retry if write failed
//this helped but still seeing similar fails to dumps
n++;
@ -709,17 +361,15 @@ uint8_t write_page_snes( uint8_t bank, uint8_t addrH, buffer *buff, write_funcpt
buff->cur_byte = n;
//exit unlock bypass mode
wr_func( 0x8000, 0x90 );
wr_func( 0x8000, 0x00 );
wr_func( 0x8000, 0x90, 0 );
wr_func( 0x8000, 0x00, 0 );
//reset the flash chip, supposed to exit too
wr_func( 0x8000, 0xF0 );
wr_func( 0x8000, 0xF0, 0 );
//exit program mode
//EXP0_HI();
PLAY_MODE();
return SUCCESS;
}
/* Desc:Flash buffer contents on to cartridge memory
@ -734,54 +384,32 @@ uint8_t flash_buff( buffer *buff ) {
uint8_t addrH = buff->page_num; //A15:8 while accessing page
uint8_t bank;
//First need to initialize mapper register bits
//Perhaps this only needs to be done on first buffer though..?
//Actually think this is best handled from buffer.c in operation == STARTFLASH
//TODO use mapper to set mapper controlled address bits
//need to calculate current bank and addrH
//TODO set unlock addresses based on what works for that mapper and how it's banks are initialized
//use mem_type to set addrH/X as needed for dump loop
//also use to get read function pointer
switch ( buff->mem_type ) {
// #ifdef NES_CONN
case PRGROM: //$8000
//Latest method used here!
//leave the host responsible for init & banking
//we just need to call a page write algo and give it mmc3_prgrom_flash_wr function
//think of this only as an 8KB ROM
//ie MMC3 flash writes are always $8000-9FFF, but the host arranges this
if (buff->mapper == NROM) {
//write_page_old( 0, (0x80 | addrH), 0x5555, 0x2AAA, buff, discrete_exp0_prgrom_wr, nes_cpu_rd );
//used by other 32KB PRG bank discrete mappers like BNROM, CNROM, & color dreams
write_page( (0x80+addrH), buff, nrom_prgrom_flash_wr);
}
if (buff->mapper == MMC1) {
//write bank value
//page_num shift by 6 bits A15 >> A9(1)
bank = (buff->page_num)>>6; //LSbit doesn't matter in 32KB mode
bank &= 0x0F; //only 4 bits in PRG register
mmc1_wr(0x8000, 0x10, 1); //ensure 32KB mode
mmc1_wr(0xE000, bank, 0); //write bank to PRG-ROM bank register
//TODO SXROM/SUROM require writting PRG-ROM MSb of address to CHR registers
write_page_mmc1( bank, (0x80 | addrH), 0xD555, 0xAAAA, buff, nes_cpu_wr, nes_cpu_rd );
write_page( (0x80+addrH), buff, mmc1_prgrom_flash_wr);
}
if (buff->mapper == UxROM) {
//addrH &= 0b1011 1111 A14 must always be low
addrH &= 0x3F;
addrH |= 0x80; //A15 doesn't apply to exp0 write, but needed for read back
//write bank value
//page_num shift by 6 bits A14 >> A8(0)
bank = buff->page_num >> 6;
//bank gets written inside flash algo
write_page_bank( bank, addrH, 0x5555, 0x2AAA, buff, discrete_exp0_prgrom_wr, nes_cpu_rd );
write_page( (0x80+addrH), buff, unrom_prgrom_flash_wr);
}
if (buff->mapper == MMC3) {
//Latest method used here!
//leave the host responsible for init & banking
//we just need to call a page write algo and give it mmc3_prgrom_flash_wr function
//think of this only as an 8KB ROM
//MMC3 flash writes are always $8000-9FFF, but the host arranges this
write_page( (0x80+addrH), buff, mmc3_prgrom_flash_wr);
}
if (buff->mapper == MMC4) {
write_page( (0x80+addrH), buff, mmc4_prgrom_sop_flash_wr);
}
if (buff->mapper == MM2) {
//addrH &= 0b1011 1111 A14 must always be low
addrH &= 0x3F;
@ -790,7 +418,7 @@ uint8_t flash_buff( buffer *buff ) {
//page_num shift by 6 bits A14 >> A8(0)
bank = buff->page_num >> 6;
//bank gets written inside flash algo
write_page_bank( bank, addrH, 0x5555, 0x2AAA, buff, disc_push_exp0_prgrom_wr, nes_cpu_rd );
write_page_mm2( bank, addrH, 0x5555, 0x2AAA, buff, disc_push_exp0_prgrom_wr, nes_cpu_rd );
}
if (buff->mapper == MAP30) {
//addrH &= 0b1011 1111 A14 must always be low
@ -802,31 +430,16 @@ uint8_t flash_buff( buffer *buff ) {
//bank gets written inside flash algo
write_page_bank_map30( bank, addrH, 0x9555, 0xAAAA, buff, nes_cpu_wr, nes_cpu_rd );
}
//if ((buff->mapper == BxROM) || (buff->mapper == CDREAM)) {
//new method uses same algo as NROM, host handles all the banking!
// //write bank value
// //page_num shift by 7 bits A15 >> A8(0)
// bank = buff->page_num >> 7;
// //Lizard banktable location
// nes_cpu_wr( (0xFF94+bank), bank );
// //hh85
// //nes_cpu_wr( (0xFFE0+bank), bank );
// //Mojontales
// //nes_cpu_wr( 0x800C, 0x00); //select first bank (only bank with table)
// //nes_cpu_wr( (0xCC43+bank), bank ); //then select desired bank
// write_page_old( 0, (0x80 | addrH), 0x5555, 0x2AAA, buff, discrete_exp0_prgrom_wr, nes_cpu_rd );
//}
if (buff->mapper == CNINJA) {
//addrH &= 0b1001 1111 A14-13 must always be low
addrH &= 0x1F;
addrH |= 0x80;
//write bank value
//page_num shift by 5 bits A13 >> A8(0)
bank = buff->page_num >> 5;
nes_cpu_wr( (0x6000), 0xA5 ); //select desired bank
nes_cpu_wr( (0xFFFF), bank ); //select desired bank
write_page_old( 0, addrH, 0xD555, 0xAAAA, buff, nes_cpu_wr, nes_cpu_rd );
write_page_cninja( 0, addrH, 0xD555, 0xAAAA, buff, nes_cpu_wr, nes_cpu_rd );
}
if (buff->mapper == A53) {
//write bank value to bank table
@ -860,36 +473,24 @@ uint8_t flash_buff( buffer *buff ) {
write_page_tssop( bank, (0x80 | addrH), buff, nes_cpu_wr, nes_cpu_rd );
}
break;
case CHRROM: //$0000
if (buff->mapper == NROM) {
//write_page_chr( 0, addrH, buff, nes_ppu_wr, nes_ppu_rd );
write_page( addrH, buff, nrom_chrrom_flash_wr);
}
if (buff->mapper == MMC1) {
write_page( addrH, buff, mmc1_chrrom_flash_wr);
}
if (buff->mapper == CNROM) {
//cur_bank and bank_table must be set in nes.c prior to calling
write_page( addrH, buff, cnrom_chrrom_flash_wr);
}
if (buff->mapper == MMC3) {
//Latest method used here!
//leave the host responsible for init & banking
//we just need to call a page write algo and give it mmc3_prgrom_flash_wr function
//think of this only as an 8KB ROM
//MMC3 flash writes are always $8000-9FFF
write_page( addrH, buff, mmc3_chrrom_flash_wr);
}
if (buff->mapper == MMC4) {
write_page( addrH, buff, mmc4_chrrom_flash_wr);
}
if (buff->mapper == CDREAM) {
// //select bank
// //8KB banks $0000-1FFF
// //page_num shift by 5 bits A13 >> A8(0)
// bank = (buff->page_num)>>5;
//
// //write bank to register
// //done inside write routine
// //nes_cpu_wr(0x8000, bank<<4);
//
// addrH &= 0x1F; //only A12-8 are directly addressable
// write_page_chr_cdream( bank, addrH, buff, nes_ppu_wr, nes_ppu_rd );
write_page( addrH, buff, cdream_chrrom_flash_wr);
}
if (buff->mapper == DPROM) {
@ -897,10 +498,8 @@ uint8_t flash_buff( buffer *buff ) {
//8KB banks $0000-1FFF
//page_num shift by 5 bits A13 >> A8(0)
bank = (buff->page_num)>>5;
//write bank to register
nes_ppu_wr(0x3FFF, bank);
addrH &= 0x1F; //only A12-8 are directly addressable
write_page_dualport( 0, addrH, buff, nes_dualport_wr, nes_dualport_rd );
}
@ -909,7 +508,9 @@ uint8_t flash_buff( buffer *buff ) {
case PRGRAM:
write_page( addrH+0x60, buff, nes_cpu_wr);
break;
//#endif
//#ifdef SNES_CONN
case SNESROM:
if (buff->mapper == LOROM_5VOLT) {
//LOROM banks start at $XX:8000
@ -938,7 +539,7 @@ uint8_t flash_buff( buffer *buff ) {
//clear any reset state
//EXP0_HI();
HADDR_SET( bank );
write_page_snes( 0, addrH, buff, snes_rom_wr, snes_rom_rd );
write_page_snes( 0, addrH, buff, snes_wr, snes_rd );
}
if (buff->mapper == HIROM) {
//need to split page_num
@ -948,11 +549,13 @@ uint8_t flash_buff( buffer *buff ) {
//A23 ~page_num[14] (bank CO starts first half, bank 40 starts second)
bank = ((((buff->page_num)>>8) | 0x40) & 0x7F);
HADDR_SET( bank );
write_page_snes( 0, addrH, buff, snes_rom_wr, snes_rom_rd );
write_page_snes( 0, addrH, buff, snes_wr, snes_rd );
}
case SNESRAM:
//warn addrX = ((buff->page_num)>>8);
break;
// #endif
default:
return ERR_BUFF_UNSUP_MEM_TYPE;
}

View File

@ -68,6 +68,15 @@ uint8_t nes_call( uint8_t opcode, uint8_t miscdata, uint16_t operand, uint8_t *r
case NROM_CHR_FLASH_WR:
nrom_chrrom_flash_wr( operand, miscdata );
break;
case MMC1_PRG_FLASH_WR:
mmc1_prgrom_flash_wr( operand, miscdata );
break;
case MMC1_CHR_FLASH_WR:
mmc1_chrrom_flash_wr( operand, miscdata );
break;
case UNROM_PRG_FLASH_WR:
unrom_prgrom_flash_wr( operand, miscdata );
break;
case CNROM_CHR_FLASH_WR:
cnrom_chrrom_flash_wr( operand, miscdata );
break;
@ -77,6 +86,12 @@ uint8_t nes_call( uint8_t opcode, uint8_t miscdata, uint16_t operand, uint8_t *r
case MMC3_CHR_FLASH_WR:
mmc3_chrrom_flash_wr( operand, miscdata );
break;
case MMC4_PRG_SOP_FLASH_WR:
mmc4_prgrom_sop_flash_wr( operand, miscdata );
break;
case MMC4_CHR_FLASH_WR:
mmc4_chrrom_flash_wr( operand, miscdata );
break;
case CDREAM_CHR_FLASH_WR:
cdream_chrrom_flash_wr( operand, miscdata );
break;
@ -809,7 +824,7 @@ uint8_t nes_dualport_page_rd_poll( uint8_t *data, uint8_t addrH, uint8_t first,
/* Desc:NES MMC1 Write
/* Desc:NES MMC1 Mapper Register Write
* write to entirety of MMC1 register
* address selects register that's written to
* address must be >= $8000 where registers are located
@ -896,6 +911,109 @@ void nrom_chrrom_flash_wr( uint16_t addr, uint8_t data )
}
/* Desc:NES MMC1 PRG-ROM FLASH Write
* Pre: nes_init() setup of io pins
* MMC1 must be properly inialized for flashing
* 32KB mode with current bank selected
* addr must be between $8000-FFFF as prescribed by init
* Post:Byte written and ready for another write
* Rtn: None
*/
void mmc1_prgrom_flash_wr( uint16_t addr, uint8_t data )
{
uint8_t rv;
//make a generic write to mapper reg so the last write will block all subsequent writes
mmc1_wr(0xC000, 0x05, 0); //just write to random CHR ROM register
//unlock and write data
//all these writes will be block by MMC1 mapper register due to valid write above that ends with a write
nes_cpu_wr(0x5555, 0xAA);
nes_cpu_wr(0xAAAA, 0x55);
nes_cpu_wr(0x5555, 0xA0);
nes_cpu_wr(addr, data);
do {
rv = nes_cpu_rd(addr);
usbPoll(); //orignal kazzo needs this frequently to slurp up incoming data
} while (rv != nes_cpu_rd(addr));
//TODO handle timeout
return;
}
/* Desc:NES MMC1 CHR-ROM FLASH Write
* Pre: nes_init() setup of io pins
* cur_bank global var must be set to desired mapper register value
* Post:Byte written and ready for another write
* Rtn: None
*/
void mmc1_chrrom_flash_wr( uint16_t addr, uint8_t data )
{
uint8_t rv;
//set banks for unlock commands
mmc1_wr(0xA000, 0x02, 0);
//PT1 always set to 0x05 for $5555 command
//send unlock command
nes_ppu_wr(0x1555, 0xAA);
nes_ppu_wr(0x0AAA, 0x55);
nes_ppu_wr(0x1555, 0xA0);
//select desired bank for write
mmc1_wr(0xA000, cur_bank, 0);
//write the data
nes_ppu_wr(addr, data);
do {
rv = nes_ppu_rd(addr);
usbPoll(); //orignal kazzo needs this frequently to slurp up incoming data
} while (rv != nes_ppu_rd(addr));
return;
}
/* Desc:NES UNROM PRG-ROM FLASH Write
* Pre: nes_init() setup of io pins
* cur_bank global var must be set to desired mapper register value
* bank_table global var must be set to base address of the bank table
* Post:Byte written and ready for another write
* Rtn: None
*/
void unrom_prgrom_flash_wr( uint16_t addr, uint8_t data )
{
uint8_t rv;
//set A14 low for lower bank so to satisfy unlock commands
nes_cpu_wr(bank_table, 0x00);
//unlock the flash
discrete_exp0_prgrom_wr(0x5555, 0xAA);
discrete_exp0_prgrom_wr(0x2AAA, 0x55);
discrete_exp0_prgrom_wr(0x5555, 0xA0);
//select desired bank and write data
nes_cpu_wr(bank_table+cur_bank, cur_bank);
discrete_exp0_prgrom_wr(addr, data);
do {
rv = nes_cpu_rd(addr);
usbPoll(); //orignal kazzo needs this frequently to slurp up incoming data
} while (rv != nes_cpu_rd(addr));
return;
}
/* Desc:NES CNROM CHR-ROM FLASH Write
* Pre: nes_init() setup of io pins
* cur_bank global var must be set to desired mapper register value
@ -993,6 +1111,93 @@ void mmc3_chrrom_flash_wr( uint16_t addr, uint8_t data )
}
/* Desc:NES MMC4 PRG-ROM FLASH Write
* Pre: nes_init() setup of io pins
* MMC4 must be properly inialized for flashing
* addr must be between $8000-BFFF as prescribed by init
* desired bank must already be selected
* cur_bank must be set to desired bank for recovery
* Post:Byte written and ready for another write
* Rtn: None
*/
void mmc4_prgrom_sop_flash_wr( uint16_t addr, uint8_t data )
{
uint8_t rv;
//unlock and write data SOP-44 flash
nes_cpu_wr(0xFAAA, 0xAA);
nes_cpu_wr(0xF555, 0x55);
nes_cpu_wr(0xFAAA, 0xA0);
nes_cpu_wr(addr, data); //corrupts bank register if addr $A000-AFFF
//recover bank register as data write would have corrupted
nes_cpu_wr(0xA000, cur_bank);
do {
rv = nes_cpu_rd(addr);
usbPoll(); //orignal kazzo needs this frequently to slurp up incoming data
} while (rv != nes_cpu_rd(addr));
//TODO handle timeout
return;
}
/* Desc:NES MMC4 CHR-ROM FLASH Write
* Pre: nes_init() setup of io pins
* cur_bank global var must be set to desired mapper register value
* Post:Byte written and ready for another write
* Rtn: None
*/
void mmc4_chrrom_flash_wr( uint16_t addr, uint8_t data )
{
uint8_t rv;
//--set bank for unlock command
//dict.nes("NES_CPU_WR", 0xB000, 0x0A) --4KB @ PPU $0000 -> $2AAA cmd & writes
//dict.nes("NES_CPU_WR", 0xC000, 0x0A) --4KB @ PPU $0000
//
//--send unlock command
//dict.nes("NES_PPU_WR", 0x1555, 0xAA)
//dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
//dict.nes("NES_PPU_WR", 0x1555, 0xA0)
//
//--select desired bank
//dict.nes("NES_CPU_WR", 0xB000, bank) --4KB @ PPU $0000 -> $2AAA cmd & writes
//dict.nes("NES_CPU_WR", 0xC000, bank) --4KB @ PPU $0000
//--write data
//dict.nes("NES_PPU_WR", addr, value)
//set banks for unlock commands
nes_cpu_wr(0xB000, 0x0A);
nes_cpu_wr(0xC000, 0x0A);
//PT1 always set to 0x05 for $5555 command
//send unlock command
nes_ppu_wr(0x1555, 0xAA);
nes_ppu_wr(0x0AAA, 0x55);
nes_ppu_wr(0x1555, 0xA0);
//select desired bank for write
nes_cpu_wr(0xB000, cur_bank);
nes_cpu_wr(0xC000, cur_bank);
//write the data
nes_ppu_wr(addr, data);
do {
rv = nes_ppu_rd(addr);
usbPoll(); //orignal kazzo needs this frequently to slurp up incoming data
} while (rv != nes_ppu_rd(addr));
return;
}
/* Desc:NES ColorDreams CHR-ROM FLASH Write
* Pre: nes_init() setup of io pins
* cur_bank global var must be set to desired mapper register value
@ -1032,8 +1237,3 @@ void cdream_chrrom_flash_wr( uint16_t addr, uint8_t data )
return;
}

View File

@ -27,9 +27,14 @@ void mmc1_wr( uint16_t addr, uint8_t data, uint8_t reset );
void nrom_prgrom_flash_wr( uint16_t addr, uint8_t data );
void nrom_chrrom_flash_wr( uint16_t addr, uint8_t data );
void mmc1_prgrom_flash_wr( uint16_t addr, uint8_t data );
void mmc1_chrrom_flash_wr( uint16_t addr, uint8_t data );
void unrom_prgrom_flash_wr( uint16_t addr, uint8_t data );
void cnrom_chrrom_flash_wr( uint16_t addr, uint8_t data );
void mmc3_prgrom_flash_wr( uint16_t addr, uint8_t data );
void mmc3_chrrom_flash_wr( uint16_t addr, uint8_t data );
void mmc4_prgrom_sop_flash_wr( uint16_t addr, uint8_t data );
void mmc4_chrrom_flash_wr( uint16_t addr, uint8_t data );
void cdream_chrrom_flash_wr( uint16_t addr, uint8_t data );

View File

@ -33,7 +33,10 @@ uint8_t snes_call( uint8_t opcode, uint8_t miscdata, uint16_t operand, uint8_t *
HADDR_SET( operand );
break;
case SNES_ROM_WR:
snes_rom_wr( operand, miscdata );
snes_wr( operand, miscdata, 0 ); //last arg is romsel state
break;
case SNES_SYS_WR:
snes_wr( operand, miscdata, 1 ); //last arg is romsel state
break;
case FLASH_WR_5V:
snes_5v_flash_wr( operand, miscdata );
@ -45,7 +48,11 @@ uint8_t snes_call( uint8_t opcode, uint8_t miscdata, uint16_t operand, uint8_t *
//8bit return values:
case SNES_ROM_RD:
rdata[RD_LEN] = BYTE_LEN;
rdata[RD0] = snes_rom_rd( operand );
rdata[RD0] = snes_rd( operand, 0 ); //last arg is romsel state
break;
case SNES_SYS_RD:
rdata[RD_LEN] = BYTE_LEN;
rdata[RD0] = snes_rd( operand, 1 ); //last arg is romsel state
break;
default:
//macro doesn't exist
@ -57,7 +64,7 @@ uint8_t snes_call( uint8_t opcode, uint8_t miscdata, uint16_t operand, uint8_t *
}
/* Desc:SNES ROM Read without changing high bank
* /ROMSEL always set low
* /ROMSEL set based on romsel arg
* EXP0/RESET not affected
* NOTE: this will access addresses when /ROMSEL isn't low on the console
* Pre: snes_init() setup of io pins
@ -65,14 +72,16 @@ uint8_t snes_call( uint8_t opcode, uint8_t miscdata, uint16_t operand, uint8_t *
* data bus left clear
* Rtn: Byte read from ROM at addr
*/
uint8_t snes_rom_rd( uint16_t addr )
uint8_t snes_rd( uint16_t addr, uint8_t romsel )
{
uint8_t read; //return value
//set address bus
ADDR_SET(addr);
ROMSEL_LO();
if (romsel==0)
ROMSEL_LO();
CSRD_LO();
//couple more NOP's waiting for data
@ -110,7 +119,7 @@ uint8_t snes_rom_rd( uint16_t addr )
}
/* Desc:SNES ROM Write
* /ROMSEL always set low
* /ROMSEL set based on romsel arg
* EXP0/RESET unaffected
* write value to currently selected bank
* NOTE: this will access addresses when /ROMSEL isn't low on the console
@ -119,7 +128,7 @@ uint8_t snes_rom_rd( uint16_t addr )
* address left on bus
* Rtn: None
*/
void snes_rom_wr( uint16_t addr, uint8_t data )
void snes_wr( uint16_t addr, uint8_t data, uint8_t romsel )
{
ADDR_SET(addr);
@ -132,7 +141,8 @@ void snes_rom_wr( uint16_t addr, uint8_t data )
//level shifter on v3.0 boards
CSWR_LO();
//Then set romsel as this enables output of level shifter
ROMSEL_LO();
if (romsel==0)
ROMSEL_LO();
//Doing the other order creates bus conflict between ROMSEL low -> WR low
//give some time
@ -142,8 +152,10 @@ void snes_rom_wr( uint16_t addr, uint8_t data )
//swaping /WR /ROMSEL order above helped greatly
//but still had 2 byte fails adding NOPS
NOP(); //4x total NOPs passed all bytes v3.0 SNES and inl6
//NOP();
//NOP(); //6x total NOPs passed all bytes
NOP();
NOP(); //6x total NOPs passed all bytes
NOP();
NOP();
//latch data to cart memory/mapper
@ -155,7 +167,7 @@ void snes_rom_wr( uint16_t addr, uint8_t data )
}
/* Desc:SNES ROM Write to current address
* /ROMSEL always set low
* /ROMSEL set based on romsel arg
* EXP0/RESET unaffected
* write value to currently selected bank, and current address
* Mostly used when address is don't care
@ -164,7 +176,7 @@ void snes_rom_wr( uint16_t addr, uint8_t data )
* address left on bus
* Rtn: None
*/
void snes_rom_wr_cur_addr( uint8_t data )
void snes_wr_cur_addr( uint8_t data, uint8_t romsel)
{
// ADDR_SET(addr);
@ -177,7 +189,8 @@ void snes_rom_wr_cur_addr( uint8_t data )
//level shifter on v3.0 boards
CSWR_LO();
//Then set romsel as this enables output of level shifter
ROMSEL_LO();
if (romsel==0)
ROMSEL_LO();
//Doing the other order creates bus conflict between ROMSEL low -> WR low
//give some time
@ -197,8 +210,10 @@ void snes_rom_wr_cur_addr( uint8_t data )
//Free data bus
DATA_IP();
}
/* Desc:SNES ROM Page Read with optional USB polling
* /ROMSEL always low, EXP0/RESET unaffected
* /ROMSEL based on romsel arg, EXP0/RESET unaffected
* if poll is true calls usbdrv.h usbPoll fuction
* this is needed to keep from timing out when double buffering usb data
* Pre: snes_init() setup of io pins
@ -208,7 +223,7 @@ void snes_rom_wr_cur_addr( uint8_t data )
* data buffer filled starting at first to last
* Rtn: Index of last byte read
*/
uint8_t snes_rom_page_rd_poll( uint8_t *data, uint8_t addrH, uint8_t first, uint8_t len, uint8_t poll )
uint8_t snes_page_rd_poll( uint8_t *data, uint8_t addrH, uint8_t romsel, uint8_t first, uint8_t len, uint8_t poll )
{
uint8_t i;
@ -217,7 +232,10 @@ uint8_t snes_rom_page_rd_poll( uint8_t *data, uint8_t addrH, uint8_t first, uint
//set /ROMSEL and /RD
CSRD_LO();
ROMSEL_LO();
if (romsel==0) {
ROMSEL_LO();
}
//set lower address bits
ADDRL(first); //doing this prior to entry and right after latching
@ -276,15 +294,15 @@ void snes_5v_flash_wr( uint16_t addr, uint8_t data )
uint8_t rv;
//unlock and write data
snes_rom_wr(0x5555, 0xAA);
snes_rom_wr(0x2AAA, 0x55);
snes_rom_wr(0x5555, 0xA0);
snes_rom_wr(addr, data);
snes_wr(0x5555, 0xAA, 0);
snes_wr(0x2AAA, 0x55, 0);
snes_wr(0x5555, 0xA0, 0);
snes_wr(addr, data, 0);
do {
rv = snes_rom_rd(addr);
rv = snes_rd(addr, 0);
usbPoll(); //orignal kazzo needs this frequently to slurp up incoming data
} while (rv != snes_rom_rd(addr));
} while (rv != snes_rd(addr, 0));
return;
}
@ -304,15 +322,15 @@ void snes_3v_flash_wr( uint16_t addr, uint8_t data )
uint8_t rv;
//unlock and write data
snes_rom_wr(0x8AAA, 0xAA);
snes_rom_wr(0x8555, 0x55);
snes_rom_wr(0x8AAA, 0xA0);
snes_rom_wr(addr, data);
snes_wr(0x8AAA, 0xAA, 0);
snes_wr(0x8555, 0x55, 0);
snes_wr(0x8AAA, 0xA0, 0);
snes_wr(addr, data, 0);
do {
rv = snes_rom_rd(addr);
rv = snes_rd(addr, 0);
usbPoll(); //orignal kazzo needs this frequently to slurp up incoming data
} while (rv != snes_rom_rd(addr));
} while (rv != snes_rd(addr, 0));
return;
}

View File

@ -7,10 +7,10 @@
#include "shared_errors.h"
uint8_t snes_call( uint8_t opcode, uint8_t miscdata, uint16_t operand, uint8_t *rdata );
uint8_t snes_rom_rd( uint16_t addr );
void snes_rom_wr( uint16_t addr, uint8_t data );
void snes_rom_wr_cur_addr( uint8_t data );
uint8_t snes_rom_page_rd_poll( uint8_t *data, uint8_t addrH, uint8_t first, uint8_t len, uint8_t poll );
uint8_t snes_rd( uint16_t addr, uint8_t romsel );
void snes_wr( uint16_t addr, uint8_t data, uint8_t romsel );
void snes_wr_cur_addr( uint8_t data, uint8_t romsel );
uint8_t snes_page_rd_poll( uint8_t *data, uint8_t addrH, uint8_t romsel, uint8_t first, uint8_t len, uint8_t poll );
void snes_5v_flash_wr( uint16_t addr, uint8_t data );
void snes_3v_flash_wr( uint16_t addr, uint8_t data );

View File

@ -16,6 +16,8 @@ typedef struct setup_packet{
//typedef uint8_t (*read_funcptr) ( uint8_t addrH, uint8_t addrL );
typedef void (*write_funcptr) ( uint16_t addr, uint8_t data );
typedef uint8_t (*read_funcptr) ( uint16_t addr );
typedef void (*write_snes_funcptr) ( uint16_t addr, uint8_t data, uint8_t romsel );
typedef uint8_t (*read_snes_funcptr) ( uint16_t addr, uint8_t romsel );
//~16 bytes per buffer...

View File

@ -156,12 +156,13 @@ local function detect_mapper_mirroring (debug)
elseif readV ~= 0 and readH ~= 0 then
if debug then print("1screen B mirroring sensed") end
return "1SCNB"
elseif readV ~= 0 and readH == 0 then
if debug then print("vertical mirroring sensed") end
return "VERT"
elseif readV == 0 and readH ~= 0 then
if debug then print("horizontal mirroring sensed") end
return "HORIZ"
return "HORZ"
end
--]]

View File

@ -64,10 +64,12 @@ function main ()
-- =====================================================
--cart/mapper specific scripts
--local curcart = require "scripts.nes.nrom"
--local curcart = require "scripts.nes.cnrom"
--local curcart = require "scripts.nes.mmc1"
local curcart = require "scripts.nes.mmc3"
--local curcart = require "scripts.nes.unrom"
--local curcart = require "scripts.nes.cnrom"
local curcart = require "scripts.nes.mmc3"
--local curcart = require "scripts.nes.mmc2"
--local curcart = require "scripts.nes.mmc4"
--local curcart = require "scripts.nes.mm2"
--local curcart = require "scripts.nes.mapper30"
--local curcart = require "scripts.nes.bnrom"
@ -76,10 +78,12 @@ function main ()
--local curcart = require "scripts.nes.action53"
--local curcart = require "scripts.nes.action53_tsop"
--local curcart = require "scripts.nes.easyNSF"
--local curcart = require "scripts.nes.fme7"
--local curcart = require "scripts.nes.dualport"
--local curcart = require "scripts.snes.v3" --and GAMEBOY for now
--local curcart = require "scripts.snes.lorom_5volt" --catskull design
--local curcart = require "scripts.snes.v2proto"
--local curcart = require "scripts.snes.v2proto_hirom" --quickly becoming the master SNES script...
-- =====================================================
-- USERS: set cart_console to the to point to the mapper script you would like to use here.
@ -123,7 +127,7 @@ function main ()
--
--BOOTLOADER TEST
--print("jumping...")
-- print("jumping...")
--jump to 0xDEADBEEF
--dict.bootload("LOAD_ADDRH", 0xDEAD)
@ -132,9 +136,13 @@ function main ()
-- dict.bootload("JUMP_ADDR", 0xCAC5)
-- dict.bootload("LOAD_ADDRH", 0x0800)
-- dict.bootload("JUMP_ADDR", 0x00C1)
--
-- dict.bootload("LOAD_ADDRH", 0x2000)
-- dict.bootload("JUMP_ADDR", 0x0430)
--dict.bootload("JUMP_BL")
--print("jumped")
-- dict.bootload("JUMP_BL")
-- dict.bootload("JUMP_TEST")
-- print("jumped")
-- debug = true
-- rv = cart.detect(debug)
@ -272,20 +280,6 @@ function main ()
--DUALPORT
--curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/ddug2.bin", "ignore/verifyout.bin")
--MMC1
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/BB_sgrom.prg", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/Zelda2.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/Zelda2_doubleprg.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/alfonzoMMC1.bin", "ignore/verifyout.bin")
--UxROM
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/AFB_128.prg", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/nomolosFINAL.prg", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/owlia_revb.prg", "ignore/verifyout.bin")
--curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/rushnattack.prg", "ignore/verifyout.bin")
--curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/TDfix.prg", "ignore/verifyout.bin")
--MM2
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/mm2_i0.prg", "ignore/verifyout.bin")
--curcart.process( true, true, false, false, false, "ignore/dump.bin", "ignore/mm2_i0.prg", "ignore/verifyout.bin")
@ -324,6 +318,7 @@ function main ()
--have a better idea of what works best and minimizing firmware compilation and updates
--NROM
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/M0_P32K_C8K.bin", "ignore/verifyout.bin")
--curcart.process( true, true, true, true, true, "ignore/dump.bin", "ignore/ddug2.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/NTB_RE.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/MM_demo.bin", "ignore/verifyout.bin")
@ -331,13 +326,37 @@ function main ()
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/DEMO.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/NES_hb_present.bin", "ignore/verifyout.bin")
--MMC1
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/P256K.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/BB_sgrom.prg", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/Zelda2.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/Zelda2_doubleprg.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/alfonzoMMC1.bin", "ignore/verifyout.bin")
--curcart.process( true, false, false, false, false, nil, nil, nil, true, false, "ignore/ramdump.bin", "ignore/zelda2_pauliscool.bin")
--UxROM
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/AFB_128.prg", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/nomolosFINAL.prg", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/owlia_revb.prg", "ignore/verifyout.bin")
--curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/rushnattack.prg", "ignore/verifyout.bin")
--curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/TDfix.prg", "ignore/verifyout.bin")
--CNROM
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/galf.bin", "ignore/verifyout.bin")
--MMC3
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/P512K_C256K.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/P256K_C128K.bin", "ignore/verifyout.bin")
--curcart.process( true, true, true, false, true, "ignore/dump.bin", "ignore/kirby.nes", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/kirby.bin", "ignore/verifyout.bin", false, false, "ignore/ramdump.bin", "ignore/ramwrite.bin")
curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/kirby.bin", "ignore/verifyout.bin", true, true, "ignore/ramdump.bin", "ignore/kirby3xSave.bin")
--curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/kirby.bin", "ignore/verifyout.bin", true, true, "ignore/ramdump.bin", "ignore/kirby3xSave.bin")
--MMC2
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/punchout.bin", "ignore/verifyout.bin")
--curcart.process( true, false, false, false, false, "ignore/dump.bin", "ignore/P256K_C128K.bin", "ignore/verifyout.bin")
--MMC4
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/fe.bin", "ignore/verifyout.bin")
--COLOR DREAMS
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/multicart_mojontalesFINAL.prg", "ignore/verifyout.bin")
@ -347,6 +366,12 @@ function main ()
--curcart.process( true, true, true, true, true, "ignore/dump.bin", "ignore/lizard_v2.prg", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/hh85.prg", "ignore/verifyout.bin")
--FME7
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/P256K_C256K.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/gimmick.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/barcode_prgx2.bin", "ignore/verifyout.bin")
--curcart.process( true, false, false, false, false, nil, nil, nil, true, true, "ignore/ramdump.bin", "ignore/kirby3xSave.bin")
--[[
--FLASHING:
--erase cart
@ -383,11 +408,16 @@ function main ()
--SNES
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/MMXdump.bin", "ignore/verifyout.bin")
curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/smw.sfc", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, false, "ignore/dump.bin", "ignore/smw.sfc", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/SF2.bin", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/dkc.bin", "ignore/verifyout.bin")
--curcart.process( true, true, false, false, false, "ignore/dump.bin", "ignore/dkc_orig.bin", "ignore/verifyout.bin")
--curcart.process( false, false, false, false, false, "ignore/dump.bin", "ignore/smw.sfc", "ignore/verifyout.bin", true, true, "ignore/ramdump.bin", "ignore/smw_lauren.bin")
--curcart.process( true, true, false, false, false, "ignore/dump.bin", "ignore/hsbm_4Mbit_Lo.sfc", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/hsbm_4Mbit_Lo.sfc", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/hsbm_4Mbit_Hi.sfc", "ignore/verifyout.bin")
--curcart.process( true, false, true, true, true, "ignore/dump.bin", "ignore/hsbm_32Mbit_Hi.sfc", "ignore/verifyout.bin")
--curcart.process( false, false, false, false, false, nil, nil, nil, true, true, "ignore/ramdump.bin", "ignore/dkc_paul.bin")
-- --old SNES code

View File

@ -226,11 +226,9 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
nes.detect_mapper_mirroring(true)
nes.ppu_ram_sense(0x1000, true)
print("EXP0 pull-up test:", dict.io("EXP0_PULLUP_TEST"))
--nes.read_flashID_prgrom_exp0(true)
prgrom_manf_id(true)
prgrom_manf_id(true)
end
--dump the cart to dumpfile
@ -251,7 +249,7 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--erase the cart
if erase then
print("\nerasing BxROM");
print("\nErasing", mapname);
print("erasing PRG-ROM");
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x5555, 0xAA)
@ -283,7 +281,7 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--needs done to make board compatible with rom
--write bank table to all banks of cartridge
wr_bank_table(banktable_base, 16)
wr_bank_table(banktable_base, prg_size/32) --32KB per bank
--TODO need to verify where bank table belongs and properly determine number of banks
--flash cart

727
host/scripts/nes/fme7.lua Normal file
View File

@ -0,0 +1,727 @@
-- create the module's table
local fme7 = {}
-- import required modules
local dict = require "scripts.app.dict"
local nes = require "scripts.app.nes"
local dump = require "scripts.app.dump"
local flash = require "scripts.app.flash"
-- file constants
local mapname = "FME7"
-- local functions
--disables WRAM, selects Vertical mirroring
--sets up CHR-ROM flash PT0 for DATA, Commands: $5555->$1555 $2AAA->$1AAA
--sets up PRG-ROM flash DATA: $8000-9FFF, Commands: $5555->D555 $2AAA->$AAAA
--leaves $8000 control reg selected to IRQ value selected so $A000 writes don't affect banking
local function init_mapper( debug )
--for save data safety start by disable WRAM, and map PRG-ROM to $6000
dict.nes("NES_CPU_WR", 0x8000, 0x08)
dict.nes("NES_CPU_WR", 0xA000, 0x00) --RAM disabled, ROM first bank mapped to $6000
--set mirroring
dict.nes("NES_CPU_WR", 0x8000, 0x0C)
dict.nes("NES_CPU_WR", 0xA000, 0x00) --00-vert 01-horz 10-NT0 11-NT1
--Bank $0 - PPU $0000-$03FF
--Bank $1 - PPU $0400-$07FF
--Bank $2 - PPU $0800-$0BFF
--Bank $3 - PPU $0C00-$0FFF
--Bank $4 - PPU $1000-$13FF
--Bank $5 - PPU $1400-$17FF
--Bank $6 - PPU $1800-$1BFF
--Bank $7 - PPU $1C00-$1FFF
--For CHR-ROM flash writes, use lower 4KB (PT0) for writting data & upper 4KB (PT1) for commands
dict.nes("NES_CPU_WR", 0x8000, 0x00)
dict.nes("NES_CPU_WR", 0xA000, 0x00) --1KB @ PPU $0000
dict.nes("NES_CPU_WR", 0x8000, 0x01)
dict.nes("NES_CPU_WR", 0xA000, 0x01) --1KB @ PPU $0400
dict.nes("NES_CPU_WR", 0x8000, 0x02)
dict.nes("NES_CPU_WR", 0xA000, 0x02) --1KB @ PPU $0800
dict.nes("NES_CPU_WR", 0x8000, 0x03)
dict.nes("NES_CPU_WR", 0xA000, 0x03) --1KB @ PPU $0C00
--use lower half of PT1 for $5555 commands
dict.nes("NES_CPU_WR", 0x8000, 0x04)
dict.nes("NES_CPU_WR", 0xA000, 0x15) --1KB @ PPU $1000
dict.nes("NES_CPU_WR", 0x8000, 0x05)
dict.nes("NES_CPU_WR", 0xA000, 0x15) --1KB @ PPU $1400
--use upper half of PT1 for $2AAA commands
dict.nes("NES_CPU_WR", 0x8000, 0x06)
dict.nes("NES_CPU_WR", 0xA000, 0x0A) --1KB @ PPU $1800
dict.nes("NES_CPU_WR", 0x8000, 0x07)
dict.nes("NES_CPU_WR", 0xA000, 0x0A) --1KB @ PPU $1C00
--For PRG-ROM flash writes:
--mode 0: $C000-FFFF fixed to last 16KByte
-- reg6 controls $8000-9FFF ($C000-DFFF in mode 1)
-- reg7 controls $A000-BFFF (regardless of mode)
--Don't want to write data to $8000-9FFF because those are the bank regs
--Writting data to $A000-BFFF is okay as that will only affect mirroring and WRAM ctl
--$5555 commands can be written to $D555 (A14 set, A13 clear)
--$2AAA commands must be written through reg6/7 ($8000-BFFF) to clear A14 & set A13
-- reg7 ($A000-BFFF) is ideal because it won't affect banking, just mirror/WRAM
-- actually $2AAA is even, so it'll only affect mirroring which is ideal
--DATA writes can occur at $8000-9FFF, but care must be taken to maintain banking.
-- Setting $8000 to a CHR bank prevents DATA writes from changing PRG banks
-- The DATA write will change the bank select if it's written to an even address though
-- To cover this, simply select the CHR bank again with $8000 reg after the data write
-- Those DATA writes can also corrupt the PRG/CHR modes, so just always follow
-- DATA writes by writting 0x00 to $8000
--$5555 commands written to $D555
--$2AAA commands written to $AAAA
dict.nes("NES_CPU_WR", 0x8000, 0x0A)
dict.nes("NES_CPU_WR", 0xA000, 0x01) --8KB @ CPU $A000
dict.nes("NES_CPU_WR", 0x8000, 0x0B)
dict.nes("NES_CPU_WR", 0xA000, 0x02) --8KB @ CPU $C000
--DATA writes written to $8000-9FFF
dict.nes("NES_CPU_WR", 0x8000, 0x09)
dict.nes("NES_CPU_WR", 0xA000, 0x00) --8KB @ CPU $8000
--dict.nes("NES_CPU_WR", 0x8000, 0x08)
--dict.nes("NES_CPU_WR", 0xA000, 0x00) --8KB @ CPU $6000
--set $8000 bank select register to IRQ ctl reg so $A000 writes don't change banking
dict.nes("NES_CPU_WR", 0x8000, 0x0E)
end
--test the mapper's mirroring modes to verify working properly
--can be used to help identify board: returns true if pass, false if failed
local function mirror_test( debug )
--put mapper in known state (mirror bits cleared)
init_mapper()
--Vertical
dict.nes("NES_CPU_WR", 0x8000, 0x0C)
dict.nes("NES_CPU_WR", 0xA000, 0x00) --00-vert 01-horz 10-NT0 11-NT1
if (nes.detect_mapper_mirroring(false) ~= "VERT") then
print(mapname, " vert mirror test fail")
return false
end
--Horizontal
dict.nes("NES_CPU_WR", 0x8000, 0x0C)
dict.nes("NES_CPU_WR", 0xA000, 0x01) --00-vert 01-horz 10-NT0 11-NT1
if (nes.detect_mapper_mirroring(false) ~= "HORZ") then
print(mapname, " horz mirror test fail")
return false
end
--NT0
dict.nes("NES_CPU_WR", 0x8000, 0x0C)
dict.nes("NES_CPU_WR", 0xA000, 0x02) --00-vert 01-horz 10-NT0 11-NT1
if (nes.detect_mapper_mirroring(false) ~= "1SCNA") then
print(mapname, " NT0 mirror test fail")
return false
end
--NT1
dict.nes("NES_CPU_WR", 0x8000, 0x0C)
dict.nes("NES_CPU_WR", 0xA000, 0x03) --00-vert 01-horz 10-NT0 11-NT1
if (nes.detect_mapper_mirroring(false) ~= "1SCNB") then
print(mapname, " NT1 mirror test fail")
return false
end
--passed all tests
if(debug) then print(mapname, " mirror test passed") end
return true
end
--read PRG-ROM flash ID
local function prgrom_manf_id( debug )
init_mapper()
if debug then print("reading PRG-ROM manf ID") end
--A0-A14 are all directly addressable in CNROM mode
--and mapper writes don't affect PRG banking
dict.nes("NES_CPU_WR", 0xD555, 0xAA)
dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
dict.nes("NES_CPU_WR", 0xD555, 0x90)
rv = dict.nes("NES_CPU_RD", 0x8000)
if debug then print("attempted read PRG-ROM manf ID:", string.format("%X", rv)) end
rv = dict.nes("NES_CPU_RD", 0x8001)
if debug then print("attempted read PRG-ROM prod ID:", string.format("%X", rv)) end
--exit software
dict.nes("NES_CPU_WR", 0x8000, 0xF0)
end
--read CHR-ROM flash ID
local function chrrom_manf_id( debug )
init_mapper()
if debug then print("reading CHR-ROM manf ID") end
--A0-A14 are all directly addressable in CNROM mode
--and mapper writes don't affect PRG banking
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x1AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x90)
rv = dict.nes("NES_PPU_RD", 0x0000)
if debug then print("attempted read CHR-ROM manf ID:", string.format("%X", rv)) end
rv = dict.nes("NES_PPU_RD", 0x0001)
if debug then print("attempted read CHR-ROM prod ID:", string.format("%X", rv)) end
--exit software
dict.nes("NES_PPU_WR", 0x8000, 0xF0)
end
--dump the PRG ROM
local function dump_prgrom( file, rom_size_KB, debug )
--PRG-ROM dump 16KB at a time through FME7 reg9&A
local KB_per_read = 16
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x08 -- $8000
while ( read_count < num_reads ) do
if debug then print( "dump PRG part ", read_count, " of ", num_reads) end
--select desired bank(s) to dump
dict.nes("NES_CPU_WR", 0x8000, 0x09)
--the bank is half the size of KB per read so must multiply by 2
dict.nes("NES_CPU_WR", 0xA000, read_count*2) --8KB @ CPU $8000
dict.nes("NES_CPU_WR", 0x8000, 0x0A)
--the bank is half the size of KB per read so must multiply by 2 and add 1 for second 8KB
dict.nes("NES_CPU_WR", 0xA000, read_count*2+1) --8KB @ CPU $A000
--16 = number of KB to dump per loop
--0x08 = starting read address A12-15 -> $8000
--NESCPU_4KB designate mapper independent read of NES CPU address space
--mapper must be 0-15 to designate A12-15
--dump.dumptofile( file, 16, 0x08, "NESCPU_4KB", true )
dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_4KB", false )
read_count = read_count + 1
end
end
--dump the CHR ROM
local function dump_chrrom( file, rom_size_KB, debug )
local KB_per_read = 2 --dump one half PT at a time so only need 2 reg writes
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x00 -- $0000
while ( read_count < num_reads ) do
if debug then print( "dump CHR part ", read_count, " of ", num_reads) end
dict.nes("NES_CPU_WR", 0x8000, 0x00)
--the bank is half the size of KB per read so must multiply by 2
dict.nes("NES_CPU_WR", 0xA000, (read_count*2)) --1KB @ PPU $0000
dict.nes("NES_CPU_WR", 0x8000, 0x01)
--the bank is half the size of KB per read so must multiply by 2 and add 1 for second 1KB
dict.nes("NES_CPU_WR", 0xA000, (read_count*2+1))--1KB @ PPU $0800
--4 = number of KB to dump per loop
--0x00 = starting read address A10-13 -> $0000
--mapper must be 0x00 or 0x04-0x3C to designate A10-13
-- bits 7, 6, 1, & 0 CAN NOT BE SET!
-- 0x04 would designate that A10 is set -> $0400 (the second 1KB PT bank)
-- 0x20 would designate that A13 is set -> $2000 (first name table)
dump.dumptofile( file, KB_per_read, addr_base, "NESPPU_1KB", false )
read_count = read_count + 1
end
end
--dump the WRAM, assumes the WRAM was enabled/disabled as desired prior to calling
local function dump_wram( file, rom_size_KB, debug )
local KB_per_read = 8
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x06 -- $6000
while ( read_count < num_reads ) do
if debug then print( "dump WRAM part ", read_count, " of ", num_reads) end
dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_4KB", false )
read_count = read_count + 1
end
end
--write a single byte to PRG-ROM flash
--PRE: assumes mapper is initialized and bank is selected as prescribed in mapper_init
--REQ: addr must be in the first bank $8000-9FFF
local function wr_prg_flash_byte(addr, value, debug)
if (addr < 0x8000 or addr > 0x9FFF) then
print("\n ERROR! flash write to PRG-ROM", string.format("$%X", addr), "must be $8000-9FFF \n\n")
return
end
--send unlock command and write byte
dict.nes("NES_CPU_WR", 0xD555, 0xAA)
dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
dict.nes("NES_CPU_WR", 0xD555, 0xA0)
dict.nes("NES_CPU_WR", addr, value)
--recover by setting $8000 reg select back to a IRQ reg
dict.nes("NES_CPU_WR", 0x8000, 0x0E)
local rv = dict.nes("NES_CPU_RD", addr)
local i = 0
while ( rv ~= value ) do
rv = dict.nes("NES_CPU_RD", addr)
i = i + 1
end
if debug then print(i, "naks, done writing byte.") end
--TODO handle timeout for problems
--TODO return pass/fail/info
end
--write a single byte to CHR-ROM flash
--PRE: assumes mapper is initialized and bank is selected as prescribed in mapper_init
--REQ: addr must be in the first 2 banks $0000-0FFF
local function wr_chr_flash_byte(addr, value, debug)
if (addr < 0x0000 or addr > 0x0FFF) then
print("\n ERROR! flash write to CHR-ROM", string.format("$%X", addr), "must be $0000-0FFF \n\n")
return
end
--send unlock command and write byte
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x1AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0xA0)
dict.nes("NES_PPU_WR", addr, value)
local rv = dict.nes("NES_PPU_RD", addr)
local i = 0
while ( rv ~= value ) do
rv = dict.nes("NES_PPU_RD", addr)
i = i + 1
end
if debug then print(i, "naks, done writing byte.") end
--TODO handle timeout for problems
--TODO return pass/fail/info
end
--host flash one bank at a time...
--this is controlled from the host side one bank at a time
--but requires mapper specific firmware flashing functions
--there is super slow version commented out that doesn't require mapper specific firmware code
local function flash_prgrom(file, rom_size_KB, debug)
init_mapper()
--test some bytes
--wr_prg_flash_byte(0x0000, 0xA5, true)
--wr_prg_flash_byte(0x0FFF, 0x5A, true)
print("\nProgramming PRG-ROM flash")
local base_addr = 0x8000 --writes occur $8000-9FFF
local bank_size = 8*1024 --FME7 8KByte per PRG bank
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
while cur_bank < total_banks do
if (cur_bank %8 == 0) then
print("writting PRG bank: ", cur_bank, " of ", total_banks-1)
end
--write the current bank to the mapper register
--DATA writes written to $8000-9FFF
dict.nes("NES_CPU_WR", 0x8000, 0x09)
dict.nes("NES_CPU_WR", 0xA000, cur_bank) --8KB @ CPU $8000
--set $8000 bank select back to a IRQ register
--keeps from having the PRG bank changing when writting data
dict.nes("NES_CPU_WR", 0x8000, 0x0E)
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- mapper specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware mapper specific functions 100% host flash algo:
--wr_prg_flash_byte(base_addr+byte_num, data, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create mapper write byte function:
--MMC3 function works on FME7 just fine
--dict.nes("MMC3_PRG_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
--NEXT STEP: firmware write page/bank function can use function pointer for the function above
-- this may cause issues with more complex algos
-- sometimes cur bank is needed
-- for this to work, need to have function post conditions meet the preconditions
-- that way host intervention is only needed for bank controls
-- Is there a way to allow for double buffering though..?
-- YES! just think of the bank as a complete memory
-- this greatly simplifies things and is exactly where we want to go
-- This is completed below outside the byte while loop @ 39KBps
if (verify) then
readdata = dict.nes("NES_CPU_RD", base_addr+byte_num)
if readdata ~= data then
print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
end
end
byte_num = byte_num + 1
end
--]]
--Have the device write a banks worth of data
--FAST! 13sec for 512KB = 39KBps
--MMC3 functions work perfectly for FME7
flash.write_file( file, 8, "MMC3", "PRGROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming PRG-ROM flash")
end
--slow host flash one byte at a time...
--this is controlled from the host side byte by byte making it slow
--but doesn't require specific firmware mapper flashing functions
local function flash_chrrom(file, rom_size_KB, debug)
init_mapper()
--test some bytes
--wr_chr_flash_byte(0x0000, 0xA5, true)
--wr_chr_flash_byte(0x0FFF, 0x5A, true)
print("\nProgramming CHR-ROM flash")
local base_addr = 0x0000
local bank_size = 4*1024 --FME7 1KByte per lower CHR bank and we're using 4 of them..
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
while cur_bank < total_banks do
if (cur_bank %8 == 0) then
print("writting CHR bank: ", cur_bank, " of ", total_banks-1)
end
--write the current bank to the mapper register
--DATA writes written to $0000-0FFF
dict.nes("NES_CPU_WR", 0x8000, 0x00)
dict.nes("NES_CPU_WR", 0xA000, (cur_bank*4)) --1KB @ PPU $0000
dict.nes("NES_CPU_WR", 0x8000, 0x01)
dict.nes("NES_CPU_WR", 0xA000, (cur_bank*4+1)) --1KB @ PPU $0400
dict.nes("NES_CPU_WR", 0x8000, 0x02)
dict.nes("NES_CPU_WR", 0xA000, (cur_bank*4+2)) --1KB @ PPU $0800
dict.nes("NES_CPU_WR", 0x8000, 0x03)
dict.nes("NES_CPU_WR", 0xA000, (cur_bank*4+3)) --1KB @ PPU $0C00
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- mapper specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware mapper specific functions 100% host flash algo:
--wr_chr_flash_byte(base_addr+byte_num, data, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create mapper write byte function:
dict.nes("MMC3_CHR_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
--FASTEST have the firmware handle flashing a bank's worth of data
--control the init and banking from the host side
if (verify) then
readdata = dict.nes("NES_PPU_RD", base_addr+byte_num)
if readdata ~= data then
print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
end
end
byte_num = byte_num + 1
end
--]]
--Have the device write a "banks" worth of data, actually 2x banks of 2KB each
--FAST! 13sec for 512KB = 39KBps
flash.write_file( file, 4, "MMC3", "CHRROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming CHR-ROM flash")
end
--Cart should be in reset state upon calling this function
local function process( test, read, erase, program, verify, dumpfile, flashfile, verifyfile, dumpram, writeram, ramdumpfile, ramwritefile)
local rv = nil
local file
local prg_size = 256
local chr_size = 256
local wram_size = 8
--initialize device i/o for NES
dict.io("IO_RESET")
dict.io("NES_INIT")
--test cart by reading manf/prod ID
if test then
print("Testing ", mapname)
init_mapper()
--verify mirroring is behaving as expected
mirror_test(true)
nes.ppu_ram_sense(0x1000, true)
print("EXP0 pull-up test:", dict.io("EXP0_PULLUP_TEST"))
--attempt to read PRG-ROM flash ID
prgrom_manf_id(true)
--attempt to read CHR-ROM flash ID
chrrom_manf_id(true)
end
--dump the ram to file
if dumpram then
print("\nDumping WRAM...")
init_mapper()
--enable RAM at $6000
dict.nes("NES_CPU_WR", 0x8000, 0x08)
dict.nes("NES_CPU_WR", 0xA000, 0xC0) --RAM enable, RAM mapped to $6000
file = assert(io.open(ramdumpfile, "wb"))
--dump cart into file
dump_wram(file, wram_size, false)
--for save data safety start by disable WRAM, and map PRG-ROM to $6000
dict.nes("NES_CPU_WR", 0x8000, 0x08)
dict.nes("NES_CPU_WR", 0xA000, 0x00) --RAM disabled, ROM first bank mapped to $6000
--close file
assert(file:close())
print("DONE Dumping WRAM")
end
--dump the cart to dumpfile
if read then
print("\nDumping PRG & CHR ROMs...")
init_mapper()
file = assert(io.open(dumpfile, "wb"))
--dump cart into file
dump_prgrom(file, prg_size, false)
dump_chrrom(file, chr_size, false)
--close file
assert(file:close())
print("DONE Dumping PRG & CHR ROMs")
end
--erase the cart
if erase then
print("\nerasing ", mapname)
init_mapper()
print("erasing PRG-ROM");
dict.nes("NES_CPU_WR", 0xD555, 0xAA)
dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
dict.nes("NES_CPU_WR", 0xD555, 0x80)
dict.nes("NES_CPU_WR", 0xD555, 0xAA)
dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
dict.nes("NES_CPU_WR", 0xD555, 0x10)
rv = dict.nes("NES_CPU_RD", 0x8000)
local i = 0
--TODO create some function to pass the read value
--that's smart enough to figure out if the board is actually erasing or not
while ( rv ~= 0xFF ) do
rv = dict.nes("NES_CPU_RD", 0x8000)
i = i + 1
end
print(i, "naks, done erasing prg.");
--TODO erase CHR-ROM only if present
init_mapper()
print("erasing CHR-ROM");
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x1AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x80)
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x1AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x10)
rv = dict.nes("NES_PPU_RD", 0x0000)
local i = 0
--TODO create some function to pass the read value
--that's smart enough to figure out if the board is actually erasing or not
while ( rv ~= 0xFF ) do
rv = dict.nes("NES_PPU_RD", 0x8000)
i = i + 1
end
print(i, "naks, done erasing chr.");
end
--write to wram on the cart
if writeram then
print("\nWritting to WRAM...")
init_mapper()
--enable RAM at $6000
dict.nes("NES_CPU_WR", 0x8000, 0x08)
dict.nes("NES_CPU_WR", 0xA000, 0xC0) --RAM enable, RAM mapped to $6000
file = assert(io.open(ramwritefile, "rb"))
flash.write_file( file, wram_size, "NOVAR", "PRGRAM", false )
--for save data safety start by disable WRAM, and map PRG-ROM to $6000
dict.nes("NES_CPU_WR", 0x8000, 0x08)
dict.nes("NES_CPU_WR", 0xA000, 0x00) --RAM disabled, ROM first bank mapped to $6000
--close file
assert(file:close())
print("DONE Writting WRAM")
end
--program flashfile to the cart
if program then
--open file
file = assert(io.open(flashfile, "rb"))
--determine if auto-doubling, deinterleaving, etc,
--needs done to make board compatible with rom
flash_prgrom(file, prg_size, true)
flash_chrrom(file, chr_size, true)
--close file
assert(file:close())
end
--verify flashfile is on the cart
if verify then
--for now let's just dump the file and verify manually
print("\nPost dumping PRG & CHR ROMs...")
init_mapper()
file = assert(io.open(verifyfile, "wb"))
--dump cart into file
dump_prgrom(file, prg_size, false)
dump_chrrom(file, chr_size, false)
--close file
assert(file:close())
print("DONE post dumping PRG & CHR ROMs")
end
dict.io("IO_RESET")
end
-- global variables so other modules can use them
-- call functions desired to run when script is called/imported
-- functions other modules are able to call
fme7.process = process
-- return the module's table
return fme7

View File

@ -9,6 +9,7 @@ local dump = require "scripts.app.dump"
local flash = require "scripts.app.flash"
-- file constants
local mapname = "MMC1"
-- local functions
@ -18,20 +19,25 @@ local function init_mapper( debug )
dict.nes("NES_CPU_RD", 0x8000)
--reset MMC1 shift register with D7 set
dict.nes("NES_CPU_WR", 0x8000, 0x80)
--this reset also effectively sets the control reg to 0x0C:
-- prg mode 3: last 16KB fixed
-- chr mode 0: single 8KB bank
-- mirroring 0: 1 screen NT0
-- mmc1_write(0x8000, 0x10); //32KB mode, prg bank @ $8000-FFFF, 4KB CHR mode
dict.nes("NES_MMC1_WR", 0x8000, 0x10)
-- //note the mapper will constantly reset to this when writing to PRG-ROM
-- //PRG-ROM A18-A14
-- mmc1_write(0xE000, 0x00); //16KB bank @ $8000
dict.nes("NES_MMC1_WR", 0xE000, 0x00)
-- //CHR-ROM A16-12 (A14-12 are required to be valid)
--select first PRG-ROM bank, disable save RAM
dict.nes("NES_MMC1_WR", 0xE000, 0x10) --LSBit ignored in 32KB mode
--bit4 RAM enable 0-enabled 1-disabled
-- //CHR-ROM A16-12 (A14-12 are required to be valid)
-- bit4 (CHR A16) is /CE pin for WRAM on SNROM
dict.nes("NES_MMC1_WR", 0xA000, 0x12) --4KB bank @ PT0 $2AAA cmd and writes
dict.nes("NES_MMC1_WR", 0xC000, 0x15) --4KB bank @ PT1 $5555 cmd fixed
-- mmc1_write(0xA000, 0x02); //4KB bank @ PT0 $2AAA cmd and writes
dict.nes("NES_MMC1_WR", 0xA000, 0x02)
-- mmc1_write(0xC000, 0x05); //4KB bank @ PT1 $5555 cmd fixed
dict.nes("NES_MMC1_WR", 0xC000, 0x05)
end
@ -139,13 +145,358 @@ end
--dump the PRG ROM
local function dump_prgrom( file, rom_size_KB, debug )
--PRG-ROM dump 32KB at a time in 32KB bank mode
local KB_per_read = 32
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x08 -- $8000
while ( read_count < num_reads ) do
if debug then print( "dump PRG part ", read_count, " of ", num_reads) end
--select desired bank(s) to dump
dict.nes("NES_MMC1_WR", 0xE000, read_count<<1) --LSBit ignored in 32KB mode
--16 = number of KB to dump per loop
--0x08 = starting read address A12-15 -> $8000
--NESCPU_4KB designate mapper independent read of NES CPU address space
--mapper must be 0-15 to designate A12-15
--dump.dumptofile( file, 16, 0x08, "NESCPU_4KB", true )
dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_4KB", false )
read_count = read_count + 1
end
end
--dump the CHR ROM
local function dump_chrrom( file, rom_size_KB, debug )
local KB_per_read = 8 --dump both PT
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x00 -- $0000
while ( read_count < num_reads ) do
if debug then print( "dump CHR part ", read_count, " of ", num_reads) end
dict.nes("NES_MMC1_WR", 0xA000, read_count*2) --4KB bank at $0000
dict.nes("NES_MMC1_WR", 0xC000, read_count*2+1) --4KB bank at $1000
--4 = number of KB to dump per loop
--0x00 = starting read address A10-13 -> $0000
--mapper must be 0x00 or 0x04-0x3C to designate A10-13
-- bits 7, 6, 1, & 0 CAN NOT BE SET!
-- 0x04 would designate that A10 is set -> $0400 (the second 1KB PT bank)
-- 0x20 would designate that A13 is set -> $2000 (first name table)
dump.dumptofile( file, KB_per_read, addr_base, "NESPPU_1KB", false )
read_count = read_count + 1
end
end
--dump the WRAM, assumes the WRAM was enabled/disabled as desired prior to calling
local function dump_wram( file, rom_size_KB, debug )
local KB_per_read = 8
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x06 -- $6000
while ( read_count < num_reads ) do
if debug then print( "dump WRAM part ", read_count, " of ", num_reads) end
dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_4KB", false )
read_count = read_count + 1
end
end
--write a single byte to PRG-ROM flash
--PRE: assumes mapper is initialized and bank is selected as prescribed in mapper_init
--REQ: addr must be in the first bank $8000-FFFF
local function wr_prg_flash_byte(addr, value, bank, debug)
if (addr < 0x8000 or addr > 0xFFFF) then
print("\n ERROR! flash write to PRG-ROM", string.format("$%X", addr), "must be $8000-FFFF \n\n")
return
end
--mmc1_wr(0x8000, 0x10, 0); //32KB mode
--//IDK why, but somehow only the first byte gets programmed when ROM A14=1
--//so somehow it's getting out of 32KB mode for follow on bytes..
--//even though we reset to 32KB mode after the corrupting final write
--
--wr_func( unlock1, 0xAA );
--wr_func( unlock2, 0x55 );
--wr_func( unlock1, 0xA0 );
--wr_func( ((addrH<<8)| n), buff->data[n] );
--//writes to flash are to $8000-FFFF so any register could have been corrupted and shift register may be off
--//In reality MMC1 should have blocked all subsequent writes, so maybe only the CHR reg2 got corrupted..? mmc1_wr(0x8000, 0x10, 1); //32KB mode
--mmc1_wr(0xE000, bank, 0); //reset shift register, and bank register
--MMC1 ignores all but the first write
--dict.nes("NES_CPU_RD", 0x8000)
-- dict.nes("NES_CPU_WR", 0x8000, 0x80) --reset MMC1 shift register with D7 set
--dict.nes("NES_MMC1_WR", 0x8000, 0x10) --32KB mode, prg bank @ $8000-FFFF, 4KB CHR mode
--doing this after the write doesn't work for some reason....
--I think the reason this works is because the last instruction is a write (and it's valid)
--so the next 4 writes are blocked by the MMC1 including the reset
dict.nes("NES_MMC1_WR", 0xC000, 0x05) --this seems to work as well which makes sense based on above..
--so now all follow on writes will be blocked until there is a read
--send unlock command and write byte
dict.nes("NES_CPU_WR", 0xD555, 0xAA) --this will reset the MMC1..?,
--but not if it was blocked by a previous write
dict.nes("NES_CPU_WR", 0xAAAA, 0x55) --blocked
dict.nes("NES_CPU_WR", 0xD555, 0xA0) --blocked
dict.nes("NES_CPU_WR", addr, value) --blocked
-- dict.nes("NES_CPU_RD", 0x8000) --must read before resetting
-- dict.nes("NES_CPU_WR", 0x8000, 0x80) --reset MMC1 shift register with D7 set
-- dict.nes("NES_MMC1_WR", 0x8000, 0x10) --32KB mode, prg bank @ $8000-FFFF, 4KB CHR mode
-- dict.nes("NES_MMC1_WR", 0xE000, bank<<1) --32KB mode, prg bank @ $8000-FFFF, 4KB CHR mode
local rv = dict.nes("NES_CPU_RD", addr)
local i = 0
while ( rv ~= value ) do
rv = dict.nes("NES_CPU_RD", addr)
i = i + 1
end
if debug then print(i, "naks, done writing byte.") end
--TODO handle timeout for problems
--TODO return pass/fail/info
end
--write a single byte to CHR-ROM flash
--PRE: assumes mapper is initialized and bank is selected as prescribed in mapper_init
--REQ: addr must be in the first bank $0000-0FFF
local function wr_chr_flash_byte(addr, value, bank, debug)
if (addr < 0x0000 or addr > 0x0FFF) then
print("\n ERROR! flash write to CHR-ROM", string.format("$%X", addr), "must be $0000-0FFF \n\n")
return
end
--set banks for unlock commands
dict.nes("NES_MMC1_WR", 0xA000, 0x02) --4KB bank @ PT0 $2AAA cmd and writes (always write data to PT0)
--dict.nes("NES_MMC1_WR", 0xC000, 0x05) --4KB bank @ PT1 $5555 cmd fixed (never changed)
--send unlock command and write byte
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0xA0)
--select desired bank for write
dict.nes("NES_MMC1_WR", 0xA000, bank) --4KB bank @ PT0 $2AAA cmd and writes (always write data to PT0)
dict.nes("NES_PPU_WR", addr, value)
local rv = dict.nes("NES_PPU_RD", addr)
local i = 0
while ( rv ~= value ) do
rv = dict.nes("NES_PPU_RD", addr)
i = i + 1
end
if debug then print(i, "naks, done writing byte.") end
--TODO handle timeout for problems
--TODO return pass/fail/info
end
--host flash one bank at a time...
--this is controlled from the host side one bank at a time
--but requires mapper specific firmware flashing functions
--there is super slow version commented out that doesn't require mapper specific firmware code
local function flash_prgrom(file, rom_size_KB, debug)
init_mapper()
--test some bytes
--wr_prg_flash_byte(0x0000, 0xA5, true)
--wr_prg_flash_byte(0x0FFF, 0x5A, true)
print("\nProgramming PRG-ROM flash")
--initial testing of MMC3 with no specific MMC3 flash firmware functions 6min per 256KByte = 0.7KBps
local base_addr = 0x8000 --writes occur $8000-9FFF
local bank_size = 32*1024 --MMC1 32KByte bank mode
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
while cur_bank < total_banks do
if (cur_bank % 2 == 0) then
print("writting PRG bank: ", cur_bank, " of ", total_banks-1)
end
--write the current bank to the mapper register
dict.nes("NES_MMC1_WR", 0xE000, cur_bank<<1) --LSBit ignored in 32KB mode
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- mapper specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware mapper specific functions 100% host flash algo:
--wr_prg_flash_byte(base_addr+byte_num, data, cur_bank, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create mapper write byte function:
--dict.nes("MMC1_PRG_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
--NEXT STEP: firmware write page/bank function can use function pointer for the function above
-- this may cause issues with more complex algos
-- sometimes cur bank is needed
-- for this to work, need to have function post conditions meet the preconditions
-- that way host intervention is only needed for bank controls
-- Is there a way to allow for double buffering though..?
-- YES! just think of the bank as a complete memory
-- this greatly simplifies things and is exactly where we want to go
-- This is completed below outside the byte while loop @ 39KBps
--local verify = true
if (verify) then
readdata = dict.nes("NES_CPU_RD", base_addr+byte_num)
if readdata ~= data then
print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
end
end
byte_num = byte_num + 1
end
--]]
--Have the device write a banks worth of data
flash.write_file( file, bank_size/1024, mapname, "PRGROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming PRG-ROM flash")
end
--slow host flash one byte at a time...
--this is controlled from the host side byte by byte making it slow
--but doesn't require specific firmware mapper flashing functions
local function flash_chrrom(file, rom_size_KB, debug)
init_mapper()
print("\nProgramming CHR-ROM flash")
--test some bytes
--wr_chr_flash_byte(0x0000, 0xA5, 0, true)
--wr_chr_flash_byte(0x0FFF, 0x5A, 0, true)
local base_addr = 0x0000
local bank_size = 4*1024 --MMC1 always write to PT0
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
while cur_bank < total_banks do
if (cur_bank %8 == 0) then
print("writting CHR bank: ", cur_bank, " of ", total_banks-1)
end
--select bank to flash
dict.nes("SET_CUR_BANK", cur_bank)
if debug then print("get bank:", dict.nes("GET_CUR_BANK")) end
--this only updates the firmware nes.c global
--which it will use when calling mmc1_chrrom_flash_wr
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- mapper specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware mapper specific functions 100% host flash algo:
--wr_chr_flash_byte(base_addr+byte_num, data, cur_bank, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create mapper write byte function:
dict.nes("MMC1_CHR_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
--FASTEST have the firmware handle flashing a bank's worth of data
--control the init and banking from the host side
if (verify) then
readdata = dict.nes("NES_PPU_RD", base_addr+byte_num)
if readdata ~= data then
print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
end
end
byte_num = byte_num + 1
end
--]]
--Have the device write a "banks" worth of data, actually 2x banks of 2KB each
--FAST! 13sec for 512KB = 39KBps
flash.write_file( file, bank_size/1024, mapname, "CHRROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming CHR-ROM flash")
end
--Cart should be in reset state upon calling this function
--this function processes all user requests for this specific board/mapper
local function process( test, read, erase, program, verify, dumpfile, flashfile, verifyfile)
local function process( test, read, erase, program, verify, dumpfile, flashfile, verifyfile, dumpram, writeram, ramdumpfile, ramwritefile)
local rv = nil
local file
local prg_size = 256
local chr_size = 128
local wram_size = 8
--initialize device i/o for NES
dict.io("IO_RESET")
@ -153,6 +504,7 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--test cart by reading manf/prod ID
if test then
print("Testing ", mapname)
--verify mirroring is behaving as expected
mirror_test(true)
@ -166,28 +518,69 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
chrrom_manf_id(true)
end
--dump the ram to file
if dumpram then
print("\nDumping WRAM...")
init_mapper()
--enable save ram
dict.nes("NES_MMC1_WR", 0xE000, 0x00) --bit4 RAM enable 0-enabled 1-disabled
--bit4 (CHR A16) is /CE pin for WRAM on SNROM
dict.nes("NES_MMC1_WR", 0xA000, 0x02) --4KB bank @ PT0 $2AAA cmd and writes
dict.nes("NES_MMC1_WR", 0xC000, 0x05) --4KB bank @ PT1 $5555 cmd fixed
file = assert(io.open(ramdumpfile, "wb"))
--dump cart into file
dump_wram(file, wram_size, false)
--for save data safety disable WRAM, and deny writes
dict.nes("NES_MMC1_WR", 0xE000, 0x10) --bit4 RAM enable 0-enabled 1-disabled
--bit4 (CHR A16) is /CE pin for WRAM on SNROM
dict.nes("NES_MMC1_WR", 0xA000, 0x12) --4KB bank @ PT0 $2AAA cmd and writes
dict.nes("NES_MMC1_WR", 0xC000, 0x15) --4KB bank @ PT1 $5555 cmd fixed
--close file
assert(file:close())
print("DONE Dumping WRAM")
end
--dump the cart to dumpfile
if read then
init_mapper() --32KB PRG-ROM banks
print("\nDumping PRG & CHR ROMs...")
init_mapper()
file = assert(io.open(dumpfile, "wb"))
--dump cart into file
<<<<<<< HEAD
-- TODO: This varies depending on cart?
dump.dumptofile( file, 128, "MMC1", "PRGROM", true )
dump.dumptofile( file, 32, "MMC1", "CHRROM", true )
=======
dump_prgrom(file, prg_size, false)
dump_chrrom(file, chr_size, false)
>>>>>>> 7651f91a467c750b2d5415cddb428dd7fb548abe
--close file
assert(file:close())
print("DONE Dumping PRG & CHR ROMs")
end
--erase the cart
if erase then
init_mapper()
print("\nerasing MMC1");
print("\nerasing ", mapname)
print("erasing PRG-ROM");
dict.nes("NES_CPU_WR", 0xD555, 0xAA)
@ -210,30 +603,63 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--TODO erase CHR-ROM only if present
init_mapper()
if (chr_size ~= 0) then
init_mapper()
print("erasing CHR-ROM");
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x80)
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x10)
rv = dict.nes("NES_PPU_RD", 0x8000)
local i = 0
--TODO create some function to pass the read value
--that's smart enough to figure out if the board is actually erasing or not
while ( rv ~= 0xFF ) do
print("erasing CHR-ROM");
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x80)
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x10)
rv = dict.nes("NES_PPU_RD", 0x8000)
i = i + 1
local i = 0
--TODO create some function to pass the read value
--that's smart enough to figure out if the board is actually erasing or not
while ( rv ~= 0xFF ) do
rv = dict.nes("NES_PPU_RD", 0x8000)
i = i + 1
end
print(i, "naks, done erasing chr.");
end
print(i, "naks, done erasing chr.");
end
--write to wram on the cart
if writeram then
print("\nWritting to WRAM...")
init_mapper()
--enable save ram
dict.nes("NES_MMC1_WR", 0xE000, 0x00) --bit4 RAM enable 0-enabled 1-disabled
--bit4 (CHR A16) is /CE pin for WRAM on SNROM
dict.nes("NES_MMC1_WR", 0xA000, 0x02) --4KB bank @ PT0 $2AAA cmd and writes
dict.nes("NES_MMC1_WR", 0xC000, 0x05) --4KB bank @ PT1 $5555 cmd fixed
file = assert(io.open(ramwritefile, "rb"))
flash.write_file( file, wram_size, "NOVAR", "PRGRAM", false )
--for save data safety disable WRAM, and deny writes
dict.nes("NES_MMC1_WR", 0xE000, 0x10) --bit4 RAM enable 0-enabled 1-disabled
--bit4 (CHR A16) is /CE pin for WRAM on SNROM
dict.nes("NES_MMC1_WR", 0xA000, 0x12) --4KB bank @ PT0 $2AAA cmd and writes
dict.nes("NES_MMC1_WR", 0xC000, 0x15) --4KB bank @ PT1 $5555 cmd fixed
--close file
assert(file:close())
print("DONE Writting WRAM")
end
--program flashfile to the cart
if program then
@ -244,8 +670,9 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--needs done to make board compatible with rom
--flash cart
flash.write_file( file, 256, "MMC1", "PRGROM", true )
flash.write_file( file, 128, "MMC1", "CHRROM", true )
flash_prgrom(file, prg_size, false)
flash_chrrom(file, chr_size, false)
--close file
assert(file:close())
@ -254,15 +681,20 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--verify flashfile is on the cart
if verify then
--for now let's just dump the file and verify manually
print("\nPost dumping PRG & CHR ROMs...")
init_mapper()
file = assert(io.open(verifyfile, "wb"))
--dump cart into file
dump.dumptofile( file, 256, "MMC1", "PRGROM", true )
dump.dumptofile( file, 128, "MMC1", "CHRROM", true )
dump_prgrom(file, prg_size, false)
dump_chrrom(file, chr_size, false)
--close file
assert(file:close())
print("DONE post dumping PRG & CHR ROMs")
end
dict.io("IO_RESET")

View File

@ -192,7 +192,7 @@ local function dump_prgrom( file, rom_size_KB, debug )
--select desired bank(s) to dump
dict.nes("NES_CPU_WR", 0x8000, 0x06)
--the bank is half the size of KB per read so must multiply by 2
dict.nes("NES_CPU_WR", 0x8001, read_count*2) --1KB @ CPU $8000
dict.nes("NES_CPU_WR", 0x8001, read_count*2) --8KB @ CPU $8000
dict.nes("NES_CPU_WR", 0x8000, 0x07)
--the bank is half the size of KB per read so must multiply by 2 and add 1 for second 8KB
@ -534,7 +534,6 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--dump the ram to file
if dumpram then
print("\nDumping WRAM...")
init_mapper()
@ -560,7 +559,6 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--dump the cart to dumpfile
if read then
print("\nDumping PRG & CHR ROMs...")
init_mapper()

651
host/scripts/nes/mmc4.lua Normal file
View File

@ -0,0 +1,651 @@
-- create the module's table
local mmc4 = {}
-- import required modules
local dict = require "scripts.app.dict"
local nes = require "scripts.app.nes"
local dump = require "scripts.app.dump"
local flash = require "scripts.app.flash"
-- file constants
local mapname = "MMC4"
-- local functions
--disables WRAM, selects Vertical mirroring
--sets up CHR-ROM flash PT0 for DATA, Commands: $5555->$1555 $2AAA->$1AAA
--sets up PRG-ROM flash DATA: $8000-9FFF, Commands: $5555->D555 $2AAA->$AAAA
--leaves $8000 control reg selected to IRQ value selected so $A000 writes don't affect banking
local function init_mapper( debug )
--RAM is always enabled..
--set mirroring
dict.nes("NES_CPU_WR", 0xF000, 0x00) --bit0: 0-vert 1-horz
--For CHR-ROM flash writes, use lower 4KB (PT0) for writting data & upper 4KB (PT1) for commands
dict.nes("NES_CPU_WR", 0xB000, 0x02) --4KB @ PPU $0000 -> $2AAA cmd & writes
dict.nes("NES_CPU_WR", 0xC000, 0x02) --4KB @ PPU $0000
dict.nes("NES_CPU_WR", 0xD000, 0x05) --4KB @ PPU $1000 -> $5555 cmd
dict.nes("NES_CPU_WR", 0xE000, 0x05) --4KB @ PPU $1000
--can use upper 16KB $D555 for $5555 commands
--need lower bank for $AAAA commands and writes
dict.nes("NES_CPU_WR", 0xA000, 0x00) --16KB @ CPU $8000
end
--test the mapper's mirroring modes to verify working properly
--can be used to help identify board: returns true if pass, false if failed
local function mirror_test( debug )
--put mapper in known state (mirror bits cleared)
init_mapper()
--Vertical
--dict.nes("NES_CPU_WR", 0xF000, 0x00) --bit0: 0-vert 1-horz
if (nes.detect_mapper_mirroring(false) ~= "VERT") then
print(mapname, " vert mirror test fail")
return false
end
--Horizontal
dict.nes("NES_CPU_WR", 0xF000, 0x01) --bit0: 0-vert 1-horz
if (nes.detect_mapper_mirroring(false) ~= "HORZ") then
print(mapname, " horz mirror test fail")
return false
end
--passed all tests
if(debug) then print(mapname, " mirror test passed") end
return true
end
--read PRG-ROM flash ID
local function prgrom_manf_id( debug )
init_mapper()
if debug then print("reading PRG-ROM manf ID") end
--SOP
dict.nes("NES_CPU_WR", 0xFAAA, 0xAA)
dict.nes("NES_CPU_WR", 0xF555, 0x55)
dict.nes("NES_CPU_WR", 0xFAAA, 0x90)
--PLCC
--dict.nes("NES_CPU_WR", 0xD555, 0xAA)
--dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
--dict.nes("NES_CPU_WR", 0xD555, 0x90)
rv = dict.nes("NES_CPU_RD", 0x8000) --0xC2 = MXIC
if debug then print("attempted read PRG-ROM manf ID:", string.format("%X", rv)) end
rv = dict.nes("NES_CPU_RD", 0x8002) --SOP 0x23/0xAB 512KB top/bottom
--SOP 0x51/0x57 256KB top/bottom
--SOP 0xD6/0x58 1MB top/bottom
if debug then print("attempted read PRG-ROM prod ID:", string.format("%X", rv)) end
--exit software
dict.nes("NES_CPU_WR", 0x8000, 0xF0)
end
--read CHR-ROM flash ID
local function chrrom_manf_id( debug )
init_mapper()
if debug then print("reading CHR-ROM manf ID") end
--A0-A14 are all directly addressable in CNROM mode
--and mapper writes don't affect PRG banking
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x90)
rv = dict.nes("NES_PPU_RD", 0x0000)
if debug then print("attempted read CHR-ROM manf ID:", string.format("%X", rv)) end
rv = dict.nes("NES_PPU_RD", 0x0001)
if debug then print("attempted read CHR-ROM prod ID:", string.format("%X", rv)) end
--exit software
dict.nes("NES_PPU_WR", 0x8000, 0xF0)
end
--dump the PRG ROM
local function dump_prgrom( file, rom_size_KB, debug )
--PRG-ROM dump 16KB at a time
local KB_per_read = 16
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x80 -- $8000
while ( read_count < num_reads ) do
if debug then print( "dump PRG part ", read_count, " of ", num_reads) end
--select desired bank(s) to dump
dict.nes("NES_CPU_WR", 0xA000, read_count) --16KB @ CPU $8000
--16 = number of KB to dump per loop
--0x08 = starting read address A12-15 -> $8000
--NESCPU_4KB designate mapper independent read of NES CPU address space
--mapper must be 0-15 to designate A12-15
--dump.dumptofile( file, 16, 0x08, "NESCPU_4KB", true )
dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_PAGE", false )
read_count = read_count + 1
end
end
--dump the CHR ROM
local function dump_chrrom( file, rom_size_KB, debug )
local KB_per_read = 8 --dump both PT at once
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x00 -- $0000
while ( read_count < num_reads ) do
if debug then print( "dump CHR part ", read_count, " of ", num_reads) end
--the bank is half the size of KB per read so must multiply by 2
dict.nes("NES_CPU_WR", 0xB000, (read_count*2)) --4KB @ PPU $0000
dict.nes("NES_CPU_WR", 0xC000, (read_count*2)) --4KB @ PPU $0000
--the bank is half the size of KB per read so must multiply by 2 and add 1 for second 1KB
dict.nes("NES_CPU_WR", 0xD000, (read_count*2+1))--4KB @ PPU $1000
dict.nes("NES_CPU_WR", 0xE000, (read_count*2+1))--4KB @ PPU $1000
--4 = number of KB to dump per loop
--0x00 = starting read address A10-13 -> $0000
--mapper must be 0x00 or 0x04-0x3C to designate A10-13
-- bits 7, 6, 1, & 0 CAN NOT BE SET!
-- 0x04 would designate that A10 is set -> $0400 (the second 1KB PT bank)
-- 0x20 would designate that A13 is set -> $2000 (first name table)
dump.dumptofile( file, KB_per_read, addr_base, "NESPPU_PAGE", false )
read_count = read_count + 1
end
end
--dump the WRAM, assumes the WRAM was enabled/disabled as desired prior to calling
local function dump_wram( file, rom_size_KB, debug )
local KB_per_read = 8
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x06 -- $6000
while ( read_count < num_reads ) do
if debug then print( "dump WRAM part ", read_count, " of ", num_reads) end
dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_4KB", false )
read_count = read_count + 1
end
end
--write a single byte to PRG-ROM flash
--PRE: assumes mapper is initialized and bank is selected as prescribed in mapper_init
--REQ: addr must be in the first bank $8000-BFFF
local function wr_prg_flash_byte(addr, value, bank, debug)
if (addr < 0x8000 or addr > 0xBFFF) then
print("\n ERROR! flash write to PRG-ROM", string.format("$%X", addr), "must be $8000-BFFF \n\n")
return
end
--select bank
dict.nes("NES_CPU_WR", 0xA000, bank)
--send unlock command and write byte
--dict.nes("NES_CPU_WR", 0xD555, 0xAA)
--dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
--dict.nes("NES_CPU_WR", 0xD555, 0xA0)
dict.nes("NES_CPU_WR", 0xFAAA, 0xAA)
dict.nes("NES_CPU_WR", 0xF555, 0x55)
dict.nes("NES_CPU_WR", 0xFAAA, 0xA0)
dict.nes("NES_CPU_WR", addr, value) --if this write was $A000-AFFF it will also corrupt the bank
--recover bank
dict.nes("NES_CPU_WR", 0xA000, bank)
local rv = dict.nes("NES_CPU_RD", addr)
local i = 0
while ( rv ~= value ) do
rv = dict.nes("NES_CPU_RD", addr)
i = i + 1
end
if debug then print(i, "naks, done writing byte.") end
--TODO handle timeout for problems
--TODO return pass/fail/info
end
--write a single byte to CHR-ROM flash
--PRE: assumes mapper is initialized and bank is selected as prescribed in mapper_init
--REQ: addr must be in the first 2 banks $0000-0FFF
local function wr_chr_flash_byte(addr, value, bank, debug)
if (addr < 0x0000 or addr > 0x0FFF) then
print("\n ERROR! flash write to CHR-ROM", string.format("$%X", addr), "must be $0000-0FFF \n\n")
return
end
--set bank for unlock command
dict.nes("NES_CPU_WR", 0xB000, 0x0A) --4KB @ PPU $0000 -> $2AAA cmd & writes
dict.nes("NES_CPU_WR", 0xC000, 0x0A) --4KB @ PPU $0000
--send unlock command
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0xA0)
--select desired bank
dict.nes("NES_CPU_WR", 0xB000, bank) --4KB @ PPU $0000 -> $2AAA cmd & writes
dict.nes("NES_CPU_WR", 0xC000, bank) --4KB @ PPU $0000
--write data
dict.nes("NES_PPU_WR", addr, value)
local rv = dict.nes("NES_PPU_RD", addr)
local i = 0
while ( rv ~= value ) do
rv = dict.nes("NES_PPU_RD", addr)
i = i + 1
end
if debug then print(i, "naks, done writing byte.") end
--TODO handle timeout for problems
--TODO return pass/fail/info
end
--host flash one bank at a time...
--this is controlled from the host side one bank at a time
--but requires mapper specific firmware flashing functions
--there is super slow version commented out that doesn't require mapper specific firmware code
local function flash_prgrom(file, rom_size_KB, debug)
init_mapper()
--test some bytes
-- wr_prg_flash_byte(0x8000, 0xA5, 0, true)
-- wr_prg_flash_byte(0xBFFF, 0x5A, 0, true)
-- wr_prg_flash_byte(0x8000, 0x15, 1, true)
-- wr_prg_flash_byte(0xBFFF, 0x1A, 1, true)
-- wr_prg_flash_byte(0x8000, 0xF5, 0xF, true)
-- wr_prg_flash_byte(0xBFFF, 0xFA, 0xF, true)
print("\nProgramming PRG-ROM flash")
local base_addr = 0x8000 --writes occur $8000-BFFF
local bank_size = 16*1024 --MMC4 16KByte per PRG bank
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
while cur_bank < total_banks do
if (cur_bank %8 == 0) then
print("writting PRG bank: ", cur_bank, " of ", total_banks-1)
end
--select desired bank, needed for first write
dict.nes("NES_CPU_WR", 0xA000, cur_bank) --16KB @ CPU $8000
--set cur_bank for recovery and subsequent bytes
dict.nes("SET_CUR_BANK", cur_bank)
if debug then print("get bank:", dict.nes("GET_CUR_BANK")) end
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- mapper specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware mapper specific functions 100% host flash algo:
--wr_prg_flash_byte(base_addr+byte_num, data, cur_bank, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create mapper write byte function:
--MMC3 function works on FME7 just fine
dict.nes("MMC4_PRG_SOP_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
--NEXT STEP: firmware write page/bank function can use function pointer for the function above
-- this may cause issues with more complex algos
-- sometimes cur bank is needed
-- for this to work, need to have function post conditions meet the preconditions
-- that way host intervention is only needed for bank controls
-- Is there a way to allow for double buffering though..?
-- YES! just think of the bank as a complete memory
-- this greatly simplifies things and is exactly where we want to go
-- This is completed below outside the byte while loop @ 39KBps
if (verify) then
readdata = dict.nes("NES_CPU_RD", base_addr+byte_num)
if readdata ~= data then
print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
end
end
byte_num = byte_num + 1
end
--]]
--Have the device write a banks worth of data
--FAST! but needs firmware specific functions and flash control
flash.write_file( file, bank_size/1024, "MMC4", "PRGROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming PRG-ROM flash")
end
--slow host flash one byte at a time...
--this is controlled from the host side byte by byte making it slow
--but doesn't require specific firmware mapper flashing functions
local function flash_chrrom(file, rom_size_KB, debug)
init_mapper()
--test some bytes
--wr_chr_flash_byte(0x0000, 0xA5, 0, true)
--wr_chr_flash_byte(0x0FFF, 0x5A, 0, true)
print("\nProgramming CHR-ROM flash")
local base_addr = 0x0000
local bank_size = 4*1024 --MMC4 4KByte CHR bank
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
while cur_bank < total_banks do
if (cur_bank %8 == 0) then
print("writting CHR bank: ", cur_bank, " of ", total_banks-1)
end
--set cur_bank so firmware can select desired bank during the write
dict.nes("SET_CUR_BANK", cur_bank)
if debug then print("get bank:", dict.nes("GET_CUR_BANK")) end
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- mapper specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware mapper specific functions 100% host flash algo:
wr_chr_flash_byte(base_addr+byte_num, data, cur_bank, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create mapper write byte function:
--dict.nes("MMC4_CHR_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
--FASTEST have the firmware handle flashing a bank's worth of data
--control the init and banking from the host side
if (verify) then
readdata = dict.nes("NES_PPU_RD", base_addr+byte_num)
if readdata ~= data then
print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
end
end
byte_num = byte_num + 1
end
--]]
--Have the device write a "banks" worth of data, actually 2x banks of 2KB each
--FAST! 13sec for 512KB = 39KBps
flash.write_file( file, bank_size/1024, "MMC4", "CHRROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming CHR-ROM flash")
end
--Cart should be in reset state upon calling this function
local function process( test, read, erase, program, verify, dumpfile, flashfile, verifyfile, dumpram, writeram, ramdumpfile, ramwritefile)
local rv = nil
local file
local prg_size = 256
local chr_size = 128
local wram_size = 8
--initialize device i/o for NES
dict.io("IO_RESET")
dict.io("NES_INIT")
--test cart by reading manf/prod ID
if test then
print("Testing ", mapname)
init_mapper()
--verify mirroring is behaving as expected
mirror_test(true)
nes.ppu_ram_sense(0x1000, true)
print("EXP0 pull-up test:", dict.io("EXP0_PULLUP_TEST"))
--attempt to read PRG-ROM flash ID
prgrom_manf_id(true)
--attempt to read CHR-ROM flash ID
chrrom_manf_id(true)
end
--dump the ram to file
if dumpram then
print("\nDumping WRAM...")
init_mapper()
--SRAM always enabled
file = assert(io.open(ramdumpfile, "wb"))
--dump cart into file
dump_wram(file, wram_size, false)
--close file
assert(file:close())
print("DONE Dumping WRAM")
end
--dump the cart to dumpfile
if read then
print("\nDumping PRG & CHR ROMs...")
init_mapper()
file = assert(io.open(dumpfile, "wb"))
--dump cart into file
dump_prgrom(file, prg_size, false)
dump_chrrom(file, chr_size, false)
--close file
assert(file:close())
print("DONE Dumping PRG & CHR ROMs")
end
--erase the cart
if erase then
print("\nerasing ", mapname)
init_mapper()
--PLCC
--print("erasing PRG-ROM");
--dict.nes("NES_CPU_WR", 0xD555, 0xAA)
--dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
--dict.nes("NES_CPU_WR", 0xD555, 0x80)
--dict.nes("NES_CPU_WR", 0xD555, 0xAA)
--dict.nes("NES_CPU_WR", 0xAAAA, 0x55)
--dict.nes("NES_CPU_WR", 0xD555, 0x10)
--SOP
print("erasing PRG-ROM SOP-44 flash takes a couple sec...");
dict.nes("NES_CPU_WR", 0xFAAA, 0xAA)
dict.nes("NES_CPU_WR", 0xF555, 0x55)
dict.nes("NES_CPU_WR", 0xFAAA, 0x80)
dict.nes("NES_CPU_WR", 0xFAAA, 0xAA)
dict.nes("NES_CPU_WR", 0xF555, 0x55)
dict.nes("NES_CPU_WR", 0xFAAA, 0x10)
rv = dict.nes("NES_CPU_RD", 0x8000)
local i = 0
--TODO create some function to pass the read value
--that's smart enough to figure out if the board is actually erasing or not
while ( rv ~= 0xFF ) do
rv = dict.nes("NES_CPU_RD", 0x8000)
i = i + 1
end
print(i, "naks, done erasing prg.");
--TODO erase CHR-ROM only if present
init_mapper()
print("erasing CHR-ROM");
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x80)
dict.nes("NES_PPU_WR", 0x1555, 0xAA)
dict.nes("NES_PPU_WR", 0x0AAA, 0x55)
dict.nes("NES_PPU_WR", 0x1555, 0x10)
rv = dict.nes("NES_PPU_RD", 0x0000)
local i = 0
--TODO create some function to pass the read value
--that's smart enough to figure out if the board is actually erasing or not
while ( rv ~= 0xFF ) do
rv = dict.nes("NES_PPU_RD", 0x8000)
i = i + 1
end
print(i, "naks, done erasing chr.");
end
--write to wram on the cart
if writeram then
print("\nWritting to WRAM...")
init_mapper()
--SRAM always enabled
file = assert(io.open(ramwritefile, "rb"))
flash.write_file( file, wram_size, "NOVAR", "PRGRAM", false )
--close file
assert(file:close())
print("DONE Writting WRAM")
end
--program flashfile to the cart
if program then
--open file
file = assert(io.open(flashfile, "rb"))
--determine if auto-doubling, deinterleaving, etc,
--needs done to make board compatible with rom
flash_prgrom(file, prg_size, false)
flash_chrrom(file, chr_size, false)
--close file
assert(file:close())
end
--verify flashfile is on the cart
if verify then
--for now let's just dump the file and verify manually
print("\nPost dumping PRG & CHR ROMs...")
init_mapper()
file = assert(io.open(verifyfile, "wb"))
--dump cart into file
dump_prgrom(file, prg_size, false)
dump_chrrom(file, chr_size, false)
--close file
assert(file:close())
print("DONE post dumping PRG & CHR ROMs")
end
dict.io("IO_RESET")
end
-- global variables so other modules can use them
-- call functions desired to run when script is called/imported
-- functions other modules are able to call
mmc4.process = process
-- return the module's table
return mmc4

View File

@ -8,7 +8,20 @@ local nes = require "scripts.app.nes"
local dump = require "scripts.app.dump"
local flash = require "scripts.app.flash"
-- file constants
-- file constants & variables
local mapname = "UxROM"
local banktable_base = 0xCC84 --Nomolos
--Nomolos' bank table is at $CC84 so hard code that for now
--wr_bank_table(0xCC84, 32)
--Owlia bank table
--wr_bank_table(0xE473, 32)
--rushnattack
--wr_bank_table(0x8000, 8)
--twindragons
--wr_bank_table(0xC000, 32)
--Armed for Battle
--wr_bank_table(0xFD69, 8)
--local rom_FF_addr = 0x8000
-- local functions
local function init_mapper( debug )
@ -23,11 +36,68 @@ local function init_mapper( debug )
dict.nes("NES_CPU_WR", 0x8000, 0x00)
end
local function wr_flash_byte(addr, value, debug)
--read PRG-ROM flash ID
local function prgrom_manf_id( debug )
init_mapper()
if debug then print("reading PRG-ROM manf ID") end
--enter software mode
--ROMSEL controls PRG-ROM /OE which needs to be low for flash writes
--So unlock commands need to be addressed below $8000
--DISCRETE_EXP0_PRGROM_WR doesn't toggle /ROMSEL by definition though, so A15 is unused
-- 15 14 13 12
-- 0x5 = 0b 0 1 0 1 -> $5555
-- 0x2 = 0b 0 0 1 0 -> $2AAA
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x5555, 0xAA)
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x2AAA, 0x55)
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x5555, 0x90)
--read manf ID
local rv = dict.nes("NES_CPU_RD", 0x8000)
if debug then print("attempted read PRG-ROM manf ID:", string.format("%X", rv)) end
--read prod ID
rv = dict.nes("NES_CPU_RD", 0x8001)
if debug then print("attempted read PRG-ROM prod ID:", string.format("%X", rv)) end
--exit software
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x8000, 0xF0)
end
--dump the PRG ROM
local function dump_prgrom( file, rom_size_KB, debug )
local KB_per_read = 16
local num_reads = rom_size_KB / KB_per_read
local read_count = 0
local addr_base = 0x08 -- $8000
while ( read_count < num_reads ) do
if debug then print( "dump PRG part ", read_count, " of ", num_reads) end
--select desired bank(s) to dump
dict.nes("NES_CPU_WR", banktable_base+read_count, read_count) --16KB @ CPU $8000
dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_4KB", false )
read_count = read_count + 1
end
end
local function wr_prg_flash_byte(addr, value, bank, debug)
dict.nes("NES_CPU_WR", banktable_base, 0x00)
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x5555, 0xAA)
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x2AAA, 0x55)
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x5555, 0xA0)
dict.nes("NES_CPU_WR", banktable_base+bank, bank)
dict.nes("DISCRETE_EXP0_PRGROM_WR", addr, value)
local rv = dict.nes("NES_CPU_RD", addr)
@ -57,7 +127,7 @@ local function wr_bank_table(base, entries, numtables)
local i = 0
while( i < entries) do
wr_flash_byte(base+i, i)
wr_prg_flash_byte(base+i, i, 0)
i = i+1;
end
@ -80,7 +150,7 @@ local function wr_bank_table(base, entries, numtables)
local i = 0
while( i < entries) do
print("write entry", i, "bank:", cur_bank)
wr_flash_byte(base+i, i)
wr_prg_flash_byte(base+i, i)
i = i+1;
end
@ -97,13 +167,97 @@ local function wr_bank_table(base, entries, numtables)
end
--host flash one byte/bank at a time...
--this is controlled from the host side one bank at a time
--but requires mapper specific firmware flashing functions
local function flash_prgrom(file, rom_size_KB, debug)
init_mapper()
--bank table should already be written
--test some bytes
--wr_prg_flash_byte(0x0000, 0xA5, true)
--wr_prg_flash_byte(0xFFFF, 0x5A, true)
print("\nProgramming PRG-ROM flash")
local base_addr = 0x8000 --writes occur $8000-9FFF
local bank_size = 16*1024 --UNROM 16KByte per PRG bank
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
--set the bank table address
dict.nes("SET_BANK_TABLE", banktable_base)
if debug then print("get banktable:", string.format("%X", dict.nes("GET_BANK_TABLE"))) end
while cur_bank < total_banks do
if (cur_bank %4 == 0) then
print("writting PRG bank: ", cur_bank, " of ", total_banks-1)
end
--select bank to flash
dict.nes("SET_CUR_BANK", cur_bank)
if debug then print("get bank:", dict.nes("GET_CUR_BANK")) end
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- MMC3 specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware MMC3 specific functions 100% host flash algo:
--wr_prg_flash_byte(base_addr+byte_num, data, cur_bank, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create MMC3 write byte function:
--can use same write function as NROM
dict.nes("UNROM_PRG_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
if (verify) then
readdata = dict.nes("NES_CPU_RD", base_addr+byte_num)
if readdata ~= data then
print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
end
end
byte_num = byte_num + 1
end
--]]
--Have the device write a banks worth of data
--Same as NROM
flash.write_file( file, bank_size/1024, mapname, "PRGROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming PRG-ROM flash")
end
--Cart should be in reset state upon calling this function
--this function processes all user requests for this specific board/mapper
local function process( test, read, erase, program, verify, dumpfile, flashfile, verifyfile)
local rv = nil
local file
local size = 128
local prg_size = 512
local chr_size = 0
local wram_size = 0
--initialize device i/o for NES
dict.io("IO_RESET")
@ -111,34 +265,37 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--test cart by reading manf/prod ID
if test then
print("Testing ", mapname)
nes.detect_mapper_mirroring(true)
nes.ppu_ram_sense(0x1000, true)
print("EXP0 pull-up test:", dict.io("EXP0_PULLUP_TEST"))
--need to set PRG-ROM A14 low when lower bank selected
init_mapper() --this may not succeed due to bus conflicts...
nes.read_flashID_prgrom_exp0(true)
prgrom_manf_id(true)
end
--dump the cart to dumpfile
if read then
print("\nDumping PRG-ROM...")
file = assert(io.open(dumpfile, "wb"))
--TODO find bank table to avoid bus conflicts!
--dump cart into file
dump.dumptofile( file, size, "UxROM", "PRGROM", true )
--dump.dumptofile( file, prg_size, "UxROM", "PRGROM", true )
dump_prgrom(file, prg_size, false)
--close file
assert(file:close())
print("DONE Dumping PRG-ROM")
end
--erase the cart
if erase then
init_mapper()
print("\nErasing", mapname);
print("\nerasing UxROM");
init_mapper()
print("erasing PRG-ROM");
dict.nes("DISCRETE_EXP0_PRGROM_WR", 0x5555, 0xAA)
@ -172,19 +329,11 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--find bank table in the rom
--write bank table to all banks of cartridge
--Nomolos' bank table is at $CC84 so hard code that for now
--wr_bank_table(0xCC84, 32)
--Owlia bank table
--wr_bank_table(0xE473, 32)
--rushnattack
--wr_bank_table(0x8000, 8)
--twindragons
--wr_bank_table(0xC000, 32)
--Armed for Battle
wr_bank_table(0xFD69, 8)
wr_bank_table(banktable_base, prg_size/16) --16KB per bank gives number of entries
--flash cart
flash.write_file( file, size, "UxROM", "PRGROM", true )
flash_prgrom(file, prg_size, false)
--close file
assert(file:close())
@ -193,14 +342,17 @@ local function process( test, read, erase, program, verify, dumpfile, flashfile,
--verify flashfile is on the cart
if verify then
--for now let's just dump the file and verify manually
print("\nPost dumping PRG-ROM")
file = assert(io.open(verifyfile, "wb"))
--dump cart into file
dump.dumptofile( file, size, "UxROM", "PRGROM", true )
dump_prgrom(file, prg_size, false)
--close file
assert(file:close())
print("DONE post dumping PRG-ROM")
end
dict.io("IO_RESET")

View File

@ -0,0 +1,587 @@
-- create the module's table
local v2proto = {}
-- import required modules
local dict = require "scripts.app.dict"
local dump = require "scripts.app.dump"
local flash = require "scripts.app.flash"
local snes = require "scripts.app.snes"
local apperase = require "scripts.app.erase"
-- file constants
-- local functions
-- Desc: attempt to read flash rom ID
-- Pre: snes_init() been called to setup i/o
-- Post:Address left on bus memories disabled
-- Rtn: true if proper flash ID found
local function rom_manf_id( debug )
local rv
--enter software mode A11 is highest address bit that needs to be valid
--datasheet not exactly explicit, A11 might not need to be valid
--part has A-1 (negative 1) since it's in byte mode, meaning the part's A11 is actually A12
--WR $AAA:AA $555:55 $AAA:AA
dict.snes("SNES_SET_BANK", 0x00)
dict.snes("SNES_ROM_WR", 0x8AAA, 0xAA)
dict.snes("SNES_ROM_WR", 0x8555, 0x55)
dict.snes("SNES_ROM_WR", 0x8AAA, 0x90)
--read manf ID
local manf_id = dict.snes("SNES_ROM_RD", 0x8000) --0x01 Cypress Manf ID
if debug then print("attempted read SNES ROM manf ID:", string.format("%X", manf_id)) end
--read prod ID
local prod_id = dict.snes("SNES_ROM_RD", 0x8002) --0x7E Prod ID S29GL
if debug then print("attempted read SNES ROM prod ID:", string.format("%X", prod_id)) end
local density_id = dict.snes("SNES_ROM_RD", 0x801C) --density 0x10=8MB 0x1A=4MB
if debug then print("attempted read SNES density ID: ", string.format("%X", density_id)) end
local boot_sect = dict.snes("SNES_ROM_RD", 0x801E) --boot sector 0x00=top 0x01=bottom
if debug then print("attempted read SNES boot sect ID:", string.format("%X", boot_sect)) end
--exit software
dict.snes("SNES_ROM_WR", 0x8000, 0xF0)
--return true if detected flash chip
if (manf_id == 0x01 and prod_id == 0x49) then
print("2MB flash detected")
return true
elseif (manf_id == 0x01 and prod_id == 0x7E) then
print("4-8MB flash detected")
return true
else
return false
end
end
local function erase_flash( debug )
local rv = nil
print("\nErasing TSSOP flash takes about 30sec...");
--WR $AAA:AA $555:55 $AAA:AA
dict.snes("SNES_SET_BANK", 0x00)
dict.snes("SNES_ROM_WR", 0x8AAA, 0xAA)
dict.snes("SNES_ROM_WR", 0x8555, 0x55)
dict.snes("SNES_ROM_WR", 0x8AAA, 0x80)
dict.snes("SNES_ROM_WR", 0x8AAA, 0xAA)
dict.snes("SNES_ROM_WR", 0x8555, 0x55)
dict.snes("SNES_ROM_WR", 0x8AAA, 0x10)
rv = dict.snes("SNES_ROM_RD", 0x8000)
local i = 0
while ( rv ~= 0xFF ) do
rv = dict.snes("SNES_ROM_RD", 0x8000)
i = i + 1
-- if debug then print(" ", i,":", string.format("%x",rv)) end
end
print(i, "naks, done erasing snes.");
--reset flash
dict.snes("SNES_ROM_WR", 0x8000, 0xF0)
end
--dump the SNES ROM starting at the provided bank
--/ROMSEL is always low for this dump
local function dump_rom( file, start_bank, rom_size_KB, mapping, debug )
local KB_per_bank
local addr_base
if (mapping=="LOROM") then
KB_per_bank = 32 -- LOROM has 32KB per bank
addr_base = 0x80 -- $8000 LOROM
elseif (mapping=="HIROM") then
KB_per_bank = 64 -- LOROM has 32KB per bank
addr_base = 0x00 -- $8000 LOROM
else
print("ERROR!! mapping:", mapping, "not supported")
end
local num_reads = rom_size_KB / KB_per_bank
local read_count = 0
while ( read_count < num_reads ) do
if debug then print( "dump ROM part ", read_count, " of ", num_reads) end
if (read_count %8 == 0) then
print("dumping ROM bank: ", read_count, " of ", num_reads-1)
end
--select desired bank
dict.snes("SNES_SET_BANK", start_bank+read_count)
dump.dumptofile( file, KB_per_bank, addr_base, "SNESROM_PAGE", false )
read_count = read_count + 1
end
end
--dump the SNES RAM starting at the provided bank
--this is currently only for lorom boards where /ROMSEL maps to RAM space
local function dump_ram( file, start_bank, ram_size_KB, mapping, debug )
local KB_per_bank
local addr_base --A15-8 address of ram start
--determine max ram per bank and base address
if (mapping == "LOROM") then
KB_per_bank = 32 -- LOROM has 32KB per bank
addr_base = 0x00 -- $0000 LOROM RAM start address
elseif (mapping == "HIROM") then
KB_per_bank = 8 -- HIROM has 8KB per bank
addr_base = 0x60 -- $6000 HIROM RAM start address
else
print("ERROR! mapping:", mapping, "not supported by dump_ram")
end
local num_banks
--determine how much ram to read per bank
if (ram_size_KB < KB_per_bank) then
num_banks = 1
KB_per_bank = ram_size_KB
else
num_banks = ram_size_KB / KB_per_bank
end
local read_count = 0
while ( read_count < num_banks ) do
if debug then print( "dump ROM part ", read_count, " of ", num_banks) end
--select desired bank
dict.snes("SNES_SET_BANK", start_bank+read_count)
if (mapping == "LOROM") then --LOROM sram is inside /ROMSEL space
dump.dumptofile( file, KB_per_bank, addr_base, "SNESROM_PAGE", false )
else -- HIROM is outside of /ROMSEL space
dump.dumptofile( file, KB_per_bank, addr_base, "SNESSYS_PAGE", false )
end
read_count = read_count + 1
end
end
--write a single byte to SNES ROM flash
--writes to currently selected bank address
local function wr_flash_byte(addr, value, debug)
if (addr < 0x0000 or addr > 0xFFFF) then
print("\n ERROR! flash write to SNES", string.format("$%X", addr), "must be $0000-FFFF \n\n")
return
end
--send unlock command and write byte
dict.snes("SNES_ROM_WR", 0x8AAA, 0xAA)
dict.snes("SNES_ROM_WR", 0x8555, 0x55)
dict.snes("SNES_ROM_WR", 0x8AAA, 0xA0)
dict.snes("SNES_ROM_WR", addr, value)
local rv = dict.snes("SNES_ROM_RD", addr)
local i = 0
while ( rv ~= value ) do
rv = dict.snes("SNES_ROM_RD", addr)
i = i + 1
end
if debug then print(i, "naks, done writing byte.") end
if debug then print("written value:", string.format("%X",value), "verified value:", string.format("%X",rv)) end
--TODO handle timeout for problems
--TODO return pass/fail/info
end
--fast host flash one bank at a time...
--this is controlled from the host side one bank at a time
--- TODO TODO TODO!!! need to specific first bank!!!! Just like dumping!
local function flash_rom(file, rom_size_KB, mapping, debug)
print("\nProgramming ROM flash")
--test some bytes
-- dict.snes("SNES_SET_BANK", 0x00) wr_flash_byte(0x8000, 0xA5, true) wr_flash_byte(0xFFFF, 0x5A, true)
-- dict.snes("SNES_SET_BANK", 0x01) wr_flash_byte(0x8000, 0x15, true) wr_flash_byte(0xFFFF, 0x1A, true)
--last of 512KB
-- dict.snes("SNES_SET_BANK", 0x0F) wr_flash_byte(0x8000, 0xF5, true) wr_flash_byte(0xFFFF, 0xFA, true)
--most of this is overkill for NROM, but it's how we want to handle things for bigger mappers
local base_addr
local bank_size
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
if (mapping=="LOROM") then
base_addr = 0x8000 --writes occur $8000-FFFF
bank_size = 32*1024 --SNES LOROM 32KB per ROM bank
elseif (mapping=="HIROM") then
base_addr = 0x0000 --writes occur $0000-FFFF
bank_size = 64*1024 --SNES HIROM 64KB per ROM bank
else
print("ERROR!! mapping:", mapping, "not supported")
end
local total_banks = rom_size_KB*1024/bank_size
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
while cur_bank < total_banks do
if (cur_bank %4 == 0) then
print("writting ROM bank: ", cur_bank, " of ", total_banks-1)
end
--select the current bank
if (cur_bank <= 0xFF) then
dict.snes("SNES_SET_BANK", cur_bank)
else
print("\n\nERROR!!!! SNES bank cannot exceed 0xFF, it was:", string.format("0x%X",cur_bank))
return
end
--program the entire bank's worth of data
--[[ This version of the code programs a single byte at a time but doesn't require
-- board specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware specific functions 100% host flash algo:
--wr_flash_byte(base_addr+byte_num, data, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create firmware write byte function:
dict.snes("FLASH_WR_3V", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
--if (verify) then
-- readdata = dict.nes("NES_CPU_RD", base_addr+byte_num)
-- if readdata ~= data then
-- print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
-- end
--end
byte_num = byte_num + 1
end
--]]
--Have the device write a banks worth of data
if (mapping == "LOROM") then
flash.write_file( file, bank_size/1024, "LOROM_3VOLT", "SNESROM", false )
else
flash.write_file( file, bank_size/1024, "HIROM_3VOLT", "SNESROM", false )
end
cur_bank = cur_bank + 1
end
print("Done Programming ROM flash")
end
local function wr_ram(file, first_bank, ram_size_KB, mapping, debug)
print("\nProgramming RAM")
--test some bytes
-- dict.snes("SNES_SET_BANK", 0x00) wr_flash_byte(0x8000, 0xA5, true) wr_flash_byte(0xFFFF, 0x5A, true)
-- dict.snes("SNES_SET_BANK", 0x01) wr_flash_byte(0x8000, 0x15, true) wr_flash_byte(0xFFFF, 0x1A, true)
--last of 512KB
-- dict.snes("SNES_SET_BANK", 0x0F) wr_flash_byte(0x8000, 0xF5, true) wr_flash_byte(0xFFFF, 0xFA, true)
local base_addr
local bank_size
local buff_size = 1 --number of bytes to write at a time
local cur_bank = 0
local total_banks
local byte_num --byte number gets reset for each bank
local byte_str, data, readdata
local addr_base --A15-8 address of ram start
--determine max ram per bank and base address
if (mapping == "LOROM") then
bank_size = 32*1024 -- LOROM has 32KB per bank
base_addr = 0x0000 -- $0000 LOROM RAM start address
elseif (mapping == "HIROM") then
bank_size = 8*1024 -- HIROM has 8KB per bank
base_addr = 0x6000 -- $6000 HIROM RAM start address
else
print("ERROR! mapping:", mapping, "not supported by dump_ram")
end
local num_banks
--determine how much ram to read per bank
if (ram_size_KB*1024 < bank_size) then
total_banks = 1
bank_size = ram_size_KB*1024
else
total_banks = ram_size_KB*1024 / bank_size
end
while cur_bank < total_banks do
print("writting RAM bank: ", cur_bank, " of ", total_banks-1)
--select the current bank
if (cur_bank <= 0xFF) then
dict.snes("SNES_SET_BANK", cur_bank+first_bank)
else
print("\n\nERROR!!!! SNES bank cannot exceed 0xFF, it was:", string.format("0x%X",cur_bank))
return
end
--program the entire bank's worth of data
---[[ This version of the code programs a single byte at a time but doesn't require
-- board specific functions in the firmware
print("This is slow as molasses, but gets the job done")
byte_num = 0 --current byte within the bank
while byte_num < bank_size do
--read next byte from the file and convert to binary
byte_str = file:read(buff_size)
data = string.unpack("B", byte_str, 1)
--write the data
--SLOWEST OPTION: no firmware specific functions 100% host flash algo:
--wr_flash_byte(base_addr+byte_num, data, false) --0.7KBps
--EASIEST FIRMWARE SPEEDUP: 5x faster, create firmware write byte function:
--dict.snes("FLASH_WR_3V", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
if (mapping == "LOROM") then
dict.snes("SNES_ROM_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
else
dict.snes("SNES_SYS_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above)
end
--if (verify) then
-- readdata = dict.nes("NES_CPU_RD", base_addr+byte_num)
-- if readdata ~= data then
-- print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata)
-- end
--end
byte_num = byte_num + 1
end
--]]
--Have the device write a banks worth of data
--flash.write_file( file, bank_size/1024, "LOROM_3VOLT", "SNESROM", false )
cur_bank = cur_bank + 1
end
print("Done Programming ROM flash")
end
--Cart should be in reset state upon calling this function
--this function processes all user requests for this specific board/mapper
local function process( test, read, erase, program, verify, dumpfile, flashfile, verifyfile, dumpram, writeram, ramdumpfile, ramwritefile)
local rv = nil
local file
local snes_mapping = "LOROM"
--local snes_mapping = "HIROM"
--local ram_size = 448 --max LOROM RAM size 32KByte * 0x70-0x7D banks
--local ram_size = 32 --just a single bank of LOROM RAM
--local ram_size = 8 --just a single bank of HIROM RAM
local ram_size = 2 --smallest SRAM cartridge RAM size (16kbit)
--local rom_size = 32
local rom_size = 512
--local rom_size = 1024
--local rom_size = 2048
--local rom_size = 4096
--local rom_size = 8192
--local rom_size = 12288
--local rom_size = 16384
-- SNES memory map banking
-- A15 always high for LOROM (A22 is typically low too)
-- A22 always high for HIROM
-- A23 splits the map in half
-- A22 splits it in quarters (between what's typically low half and high half)
-- b 7 6 5 4 : 3 2 1 0
-- A23 22 21 20 : 19 18 17 16
local rombank --first bank of rom byte that contains A23-16
local rambank --first bank of ram
if (snes_mapping == "LOROM") then
-- LOROM typically sees the upper half (A15=1) of the first address 0b0000:1000_0000
rombank = 0x00
rambank = 0x70 --LOROM maps from 0x70 to 0x7D
--some for lower half of bank only, some for both halfs...
elseif (snes_mapping == "HIROM") then
-- HIROM typically sees the last 4MByte as the first addresses = 0b1100:0000_0000
rombank = 0xC0
--rombank = 0x40 --second HiROM bank (slow)
rambank = 0x30
end
--initialize device i/o for SNES
dict.io("IO_RESET")
dict.io("SNES_INIT")
--test cart by reading manf/prod ID
if test then
print("Testing SNES board");
--SNES detect HiROM or LoROM & RAM
--SNES detect if able to read flash ID's
if not rom_manf_id(true) then
print("ERROR unable to read flash ID")
return
end
end
--dump the ram to file
if dumpram then
print("\nDumping SAVE RAM...")
--may have to verify /RESET is high to enable SRAM
file = assert(io.open(ramdumpfile, "wb"))
--dump cart into file
dump_ram(file, rambank, ram_size, snes_mapping, true)
--may disable SRAM by placing /RESET low
--close file
assert(file:close())
print("DONE Dumping SAVE RAM")
end
--dump the cart to dumpfile
if read then
print("\nDumping SNES ROM...")
file = assert(io.open(dumpfile, "wb"))
--dump cart into file
dump_rom(file, rombank, rom_size, snes_mapping, false)
--close file
assert(file:close())
print("DONE Dumping SNES ROM")
end
--erase the cart
if erase then
erase_flash()
end
--write to wram on the cart
if writeram then
print("\nWritting to SAVE RAM...")
file = assert(io.open(ramwritefile, "rb"))
--flash.write_file( file, ram_size, "NOVAR", "PRGRAM", false )
--flash.write_file( file, ram_size, "LOROM_3VOLT", "SNESROM", false )
wr_ram(file, rambank, ram_size, snes_mapping, true)
--close file
assert(file:close())
print("DONE Writting SAVE RAM")
end
--program flashfile to the cart
if program then
--open file
file = assert(io.open(flashfile, "rb"))
--determine if auto-doubling, deinterleaving, etc,
--needs done to make board compatible with rom
--flash cart
flash_rom(file, rom_size, snes_mapping, true)
--close file
assert(file:close())
end
--verify flashfile is on the cart
if verify then
print("\nPost dumping SNES ROM...")
--for now let's just dump the file and verify manually
file = assert(io.open(verifyfile, "wb"))
--dump cart into file
dump_rom(file, rombank, rom_size, snes_mapping, false)
--close file
assert(file:close())
print("DONE Post dumping SNES ROM")
end
dict.io("IO_RESET")
end
-- global variables so other modules can use them
-- call functions desired to run when script is called/imported
-- functions other modules are able to call
v2proto.process = process
-- return the module's table
return v2proto

View File

@ -112,13 +112,14 @@
// designate the address base with mapper since this read is mapper independent
#define NESCPU_4KB 0x20 //mapper (bits 3-0) specifies A12-15 (4bits)
#define NESPPU_1KB 0x21 //mapper (bits 5-2) specifies A10-13 (4bits)
//DON'T WANT TO USE THESE ANY MORE, USE THE PAGE VERSIONS BELOW
//since the types above only specify the granularity of the read, there is no reason
//to limit it to 1-4KByte. May as well give page granularity and use the whole mapper byte!
#define NESCPU_PAGE 0x22 //mapper byte specifies A15-8
#define NESPPU_PAGE 0x23 //mapper byte specifies A13-8 bits 6 & 7 can't be set
#define SNESROM_PAGE 0x24 //mapper byte specifies A15-8
#define SNESROM_PAGE 0x24 //mapper byte specifies A15-8 ROMSEL low
#define SNESSYS_PAGE 0x25 //mapper byte specifies A15-8 ROMSEL high
//operand LSB
//SST 39SF0x0 manf/prod IDs

View File

@ -39,6 +39,7 @@
//#define DISCRETE_EXP0_MAPPER_WR 0x03
//write to an MMC1 register, provide bank/address & data
#define NES_MMC1_WR 0x04
#define NES_DUALPORT_WR 0x05
@ -52,6 +53,11 @@
#define NROM_CHR_FLASH_WR 0x0A
#define CNROM_CHR_FLASH_WR 0x0B //needs cur_bank & bank_table prior to calling
#define CDREAM_CHR_FLASH_WR 0x0C //needs cur_bank & bank_table prior to calling
#define UNROM_PRG_FLASH_WR 0x0D //needs cur_bank & bank_table prior to calling
#define MMC1_PRG_FLASH_WR 0x0E
#define MMC1_CHR_FLASH_WR 0x0F //needs cur_bank set prior to calling
#define MMC4_PRG_SOP_FLASH_WR 0x10 //current bank must be selected, & needs cur_bank set prior to calling
#define MMC4_CHR_FLASH_WR 0x11 //needs cur_bank set prior to calling
#define SET_CUR_BANK 0x20

View File

@ -31,7 +31,9 @@
#define FLASH_WR_5V 0x03 //5v PLCC flash algo
#define FLASH_WR_3V 0x04 //3v TSSOP flash algo
//similar to ROM RD/WR above, but /ROMSEL doesn't go low
#define SNES_SYS_RD 0x05 //RL=3
#define SNES_SYS_WR 0x06
#endif