Various changes to STM8 SWIM code to make more versatile allowing SWIM
pin to be located effectively on any STM32 GPIO pin. Still haven't
touched an AVR implementation, but made place holders so it can compile
for AVR at least. These SWIM changes aren't heavily tested, mostly just
made sure could flash SOIC-8 STM8 CIC via CIC CLK.
Beginings of JTAG code to configure CPLDs. Currently only tested state
change and scan out reading MachXO-256, 4032/64v, & XC9572/36XL CPLDs
Tested and working on inlretro6 v1.0p, stm adapter, & avr kazzos.
Older devices with flipflops will apply 5v signals to JTAG pins but time
is mostly minimized by keeping signals defaulted low unless actively
changing states or scanning data.
Still need to verify scan in working, probably move TDI/TDO long strings
to buffers instead of 32byte PBJE data array. Also need smarter PBJE
host code to keep track of current state and come up with PBJE register
values without hard coding them..
But things are working fairly well so far with SWIM & JTAG
implementations. Had some issues where I thought jtag pin toggling was
getting optimized out, but I must have simply had the logic analyzer
speed set too low and was missing pin changes that can be as quick as
40nsec with space optimized code. Current inl6 code is ~4400Bytes,
without optimization it's nearly 50% larger at ~6550Bytes..!
Optimizations seem fine in testing and with logic analyzer running at
50Mhz which is good because the GPIO registers are set as volatile so
they better not be getting optimized away!
boards for SF2 builds. Not necessarily the most clean, but it was
stable and worked well.
Need to get swim comms working on other board designs.
Need to come up with better swim activation with more exact timing.
Still need to implement swim comms on avr, hopefully that doesn't prove
to be too much of a PITA... Not looking forward to that. Can probably
only handle low speed, and faking pullup may not work as well without
time on it's side @ 16Mhz...
-Updated STM devices to always run @ 48MHz
Doesn't seem to cause any problems with SNES flashing couple thousand SF2
boards have been flashed with this build without issues
-Added note to usb_operations.c as manf/prod ID can't be read if drivers
aren't installed. Caused issues for Todd as he hadn't installed drivers
for new hardware.
-STM swim operations are working pretty well for SNES v2 and v3 boards
Haven't even touched SWIM on AVR core yet...
SWIM is pretty pin independent but only implemented on EXP0 so far
Reads "ROTF" aren't bullet proof but they're pretty good. Biggest
room for improvement aside from adding a legit pullup would be to have
an interrupt trigger the device header bit falling edge instead of the
current polling method which has decent amount of jitter.
Implementing interrupts would also probably allow for more easily
supporing reads longer than a single byte...