Able to enter active mode and Write on the fly.
Simple test to toggle LED on STM8 GPIO works!
Still quite far from ideal setup. Some things needed:
-defines for ACK/NAK/NO_RESP in dictionary to report inteligbly to lua
-move test SWIM code into separate lua script
-define STM8-CIC registers for easier calling from lua
-entering active mode is too board dependent, need to use swim_base
-Need to make better use of device timers for entering active mode
-arm assembly is quite a mess, unaware of calling convention when writting
-stopping more than just r0-4, r5+ need to be restored if used
-thinking I'd like a full out assmebly file that gets compiled separately
-nothing is done to support SWIM with AVR
-hacking lack of powerful enough pullup on SWIM pin
not much that can be done to get around this...
don't want to add resistors to programmer for every pin I 'might' use
don't want to add resistors to each board that's made
-seems to work well enough, but reads will prob prove challenging
-currently only running at slow speed with ton of NOPs
AVR not yet working, performing low level SWIM operations will require
decent amount of core specific code due to differences in pin driver
styles, timers, cycles per instruction, etc. The fact that SWIM pin
changes based on the board ADDR0, DATA0, EXP0, etc multiplies this low
level code... Thinking about executing SWIM low level drivers from SRAM.
Initialization could include loading these routines to SRAM.
For now just focusing on supporting SWIM on STM cores for SNES boards.
prototype which has STM8 CIC driving flash /OE with inversion of SYS /RST.
STM8 CIC is running at 16Mhz, and doesn't actually function as CIC. Still
need to come up with special way to signal to CIC that it's plugged into a
programmer and not a console.
Things aren't as fast as they could be, but they're good for now and
proved working on all kazzo versions. Expecting decent speedup could be
aquired by optimizing the flash routine, not changing address unless
needed, or only changing low byte of address, etc. Could also let the
host put the flash chip in unlock bypass mode and keep it there until done
with flashing.
Current speeds:
INL6: 42.2 KBps flashing, 92KBps dumping
stm adapter: 25.3 KBps flashing, 96KBps dumping
AVR kazzo: 18.0KBps flashing, 14.3KBps dumping
Was able to get the inl6 up to 59KBps flashing. Which was 35sec total
flash time for 16mbit chip which has typical flash time of 22s plus
overhead. This got slowed down when supporting stm adapter as checks for
buffer status were required from what I recall. Also fixing flash polling
routine AVR found slowed things down.
Was able to get 140KBps dump time on inl6 with 16mbit SNES flash. This
was slowed when supporting stm adapter which brought out issue with stm32
usb driver. Locks up the device if the buffer isn't fully dumped prior to
calling. Need to get driver to support sending NAKs until data is dumped.
Current fix for checking buffer status slows things down for all devices.
AVR brought out issue with SNES v3 design where we can't rely on flash
poll data to toggle between reads as /OE and /CE are stuck low. Have to
toggle /RESET slowly to toggle /OE and ensure we don't move on to next
byte until previous is fully flashed.
STM32 found initial issue where /WR should be set low first to set
direction of data level shifter, then set /ROMSEL low to enable level
shifter output. Not doing this caused bus conflicts between the two
causing flakey writes where not all bits were getting cleared.
lua scripts currently force SNES, need to add smart check that identifies
SNES flash board if vector data is 0xFFFF. Also funky order where it
always erases after flashing as this was more convient for testing.
While this commit is far from ideal, it's stable and I've done my best to
not commit junk that will cause problems later. Just make sure to always
verify dumping algo before assuming something is wrong with writes!
Need to get stm32 up and working, currently the usbFunctionWrite causes
device descriptor request to fail on stm32 devices. So need to do some
debugging there which I was expecting..
tested and verified on purple, green, and yellow/orange avr kazzos and
stm32 inlretro6 proto, and stm32 adapter with yellow kazzo board
AVR takes ~17.5sec to dump 256KB -> 1:10 for 1MByte = 14.6KBps
STM takes ~8.5sec to dump 1MByte = 120KBps
STM32 usb driver is far from optimal as it's setup to be minimal with only
8byte endpoint0 to make an effort to align avr and stm. Larger endpoints
and bulk transfers should greatly speed up stm usb transfers
refactored firmware buffer.c and implemented most of the required opcodes
added check that should cover if device isn't ready for a IN/OUT
transfer. Does this by usbFunctionSetup returning zero which causes the
device to ignore the host. Don't think I've got the stm32 usb driver
setup properly to handle this not sure I fully understand Vusb driver
either. Anyway, hopefully it works well enough for now and keep this in
mind if issues crop up in future.
Still haven't implemented usbFunctionWrite, not sure stm usb driver is
setup properly yet either..
build sizes:
avr yellow/orange: avr-size build_avr/avr_kazzo.elf
text data bss dec hex filename
5602 6 674 6282 188a build_avr/avr_kazzo.elf
previous builds of avr code size was ~6.4KB when flashing and dumping was working.
AVR bootloader is 1.7KB taking up majority of 2KB boot sector.
So AVR has 16KB - 2KB boot = 14KB available, using ~44% of non-boot sector
available flash Have 4 buffers defined, and 512B of raw buffer defined so using
~65% SRAM Making pretty good use of the chip just for basic framework.
Not a ton of room for board/mapper specific routines, so will have to keep this
in mind. Creating more generic routines to save flash will come with a speed
hit, but perhaps we shouldn't worry too much about that as devices below
really boost speed without even trying. There is some sizable amount of
SRAM available could perhaps load temporary routines into SRAM and execute
Also have ability to decrease buffer sizes/allocation. Perhaps routines
could actually be store *IN* the raw buffers.. ;)
stm adapter: arm-none-eabi-size -t build_stm/inlretro_stm.elf
text data bss dec hex filename
7324 0 680 8004 1f44 build_stm/inlretro_stm.elf
Currently targetting STM32F070C6 which has 32KB flash, 6KB SRAM
Could upgrade to STM32F070CB in same LQFP-48 package w/ 128KB/16KB
Don't think that'll be of much value though especially with limitation
on connectors for adapter.
So currently don't have user bootloader, only built in ones.
8KB of 32KB avaiable flash = 25% utilization
680B of 6KB available sram = 11% utilization
32KB device doubles amount of available flash compared to AVR, although
stm32 code isn't quite a condensed compared to AVR.
stm inlretro6: arm-none-eabi-size -t build_stm/inlretro_stm.elf
text data bss dec hex filename
6932 0 680 7612 1dbc build_stm/inlretro_stm.elf
Mostly limited to STM32F070RB as choosing device requiring XTAL, and
desire large number of i/o. This device provides 128KB flash, 16KB SRAM
Currently using 7.6KB/128KB flash = 6% utilization
Currently using 680B/16KB SRAM = 4.1% utilization
LOTS of room for growth in this device!! Part of why I choose it over
crystalless 072 version, as it came with more flash for less cost.
Also hardly making use of 1KB of USB dedicated SRAM:
32B buffer table entries
16B endpoint0 IN/OUT
48B of 1024B available = 4.6% utilization
Have separate lua modules now in scripts/app folder
Dictionary calls are now their own lua module
firmware now capable of calling multiple different dictionaries
have firmware & lua io and nes dictionaries, able to detect
NES and famicom carts. Created expansion port abstraction so most kazzo
versions behave identically.
Created separate make file for stm adapter and inl6
added PURPLE_KAZZO and GREEN_KAZZO defines back in. They work well enough
for sensing NES vs famicom carts so far. GREEN_KAZZO requires
PURPLE_KAZZO to also be defined. GREEN_KAZZO is also only compatible with
AVR_CORE due to software_AHL/AXL functions specifically written for AVR.
I think things will work if a STM_ADAPTER is placed on a PURPLE_KAZZO and
both those defines are made as only real difference is software tying of
AXL and X_OE. But haven't tested this aside from ensuring it compiles.
Have correction to pinport_al.h that will commit immediately after this.
Effectively deleted old dictionary call function/files.
Created lua_usb_vend_xfr function so lua can directly send and receive
vendor setup transfers.
Dictionary calls are more like function calls now, and all args aren't
required so the LED can be turned on for example in lua like so:
dict_pinport("LED_ON")
general format is:
dict_name( opcode, operand, misc, datastring )
Also added ability to store opcode's return length in shared dict library
files with RL=number in the comments following the opcode.
Negative numbers designate OUT transfers, positive for IN.
Default value can be determined by each dictionary's calling function.
Decided pinport is 1 for SUCCESS/ERROR CODE.
Also have default return data means with second byte giving length of
return data in bytes that follows.
dictionary call function reports any errors reported by the device and
returns any return data from the device excluding error code / data len
Now time to start implementing some of these dictionaries on the device.
packet arrives. Had issue with return data on STM32 not being properly
aligned when the rv array was only 8bit. So defining it as a 16bit array
and then pointing a 8bit pointer to it seems to be an easy fix for now.
Ready to start working on pinport dictionary. Need to get lua code
working on a lower level handling the dictionary calls. Need it do do
things like fill out the wLength and everything for me so one doesn't have
to remember every detail about an opcode/dictionary before calling it.
Realizing code was heavily segmented based on how big/many operands there
were and how big the return data was. This is hard to maintain, need lua
to resolve this issue, and make everything easier to script. Thinking
opcode/dictionary calls need to be more like a function call. Passing in
necessary args only, and returning data instead of succeed/fail.
Now lua scripts can make usb dictionary calls based off of C shared_dict*.h files.
Don't have to have separate lua tables for host, and C #defines for firmware to keep things aligned!
Tested and working on all current shared_dict*.h files including some simple error checking.
Does not permit multi-line comments, but inline is fine and properly accounted for.
defines starting with underscore are skipped to not trip up header define guard statement.
defines can't be set to other defines, macros, or math, only a decimal/hex number.
Tested and able to turn on/off/ip/op LED on kazzo.
Currently have redefined table that needs to align with shared dictionary
files.
Next task is to parse shared dictionary files to create tables at runtime.
scripts/usb_device.lua is planned to use for usb device info prior to
connecting. Currently just used to determine log level.
scripts/inlretro.lua is the main script called by the C main function.
Prior to passing control over to lua in inlretro.lua, commandline args
must be passed in somehow. And the USB device must be connected to, and
usb transfer object passed to dictionary's local transfer pointer.
Not sure dictionary having a local static pointer to usb transfer struct
is a great idea, but simplest solution I could think of to keep from
complicating lua by passing the pointer/object back and forth between lua
and C. This method mostly abstracts the usb transfer object from lua
which makes sense to me anyway.
Need to come up with a way for shared_dict_*.h defines to be made
available to lua scripts. Seems a lua table would be the best solution,
but don't want to keep manual copies for all the defines. These C defines
are necessary as it's the only clean way to define the dictionaries for
the firmware. Thinking the best solution will be a lua script that
parses all shared_dict*.h files and creates tables at run time. Planning
to hardcode some tables for now, then implement a .h file parser in lua.