-- create the module's table local action53_tsop = {} -- import required modules local nes = require "scripts.app.nes" local dict = require "scripts.app.dict" local dump = require "scripts.app.dump" local flash = require "scripts.app.flash" local files = require "scripts.app.files" local buffers = require "scripts.app.buffers" -- file constants local mapname = "A53" -- local functions local function create_header( file, prgKB, chrKB ) --write_header( file, prgKB, chrKB, mapper, mirroring ) nes.write_header( file, prgKB, 0, op_buffer[mapname], 0) end --local function wr_flash_byte(addr, value, debug) --base is the actual NES CPU address, not the rom offset (ie $FFF0, not $7FF0) --local function wr_bank_table(base, entries) --Action53 not susceptible to bus conflicts, no banktable needed --initialize mapper for dump/flash routines local function init_mapper( debug ) --//Setup as CNROM, then scroll through outer banks. --cpu_wr(0x5000, 0x80); //reg select mode dict.nes("NES_CPU_WR", 0x5000, 0x80) --// xxSSPPMM SS-size: 0-32KB, PP-prg mode: 0,1 32KB, MM-mirror --cpu_wr(0x8000, 0b00000000); //reg value 256KB inner, 32KB banks dict.nes("NES_CPU_WR", 0x8000, 0x00) --cpu_wr(0x5000, 0x81); //outer reg select mode dict.nes("NES_CPU_WR", 0x5000, 0x81) --cpu_wr(0x8000, 0x00); //first 32KB bank dict.nes("NES_CPU_WR", 0x8000, 0x00) -- --cpu_wr(0x5000, 0x01); //inner prg reg select dict.nes("NES_CPU_WR", 0x5000, 0x01) --cpu_wr(0x8000, 0x00); //controls nothing in this size dict.nes("NES_CPU_WR", 0x8000, 0x00) --cpu_wr(0x5000, 0x00); //chr reg select dict.nes("NES_CPU_WR", 0x5000, 0x00) --cpu_wr(0x8000, 0x00); //first chr bank dict.nes("NES_CPU_WR", 0x8000, 0x00) --selecting CNROM means that mapper writes to $8000-FFFF will only change the CHR-RAM bank which --doesn't affect anything we're concerned about --enable flash writes $5000 set to 0b0 101 010 0 dict.nes("NES_CPU_WR", 0x5000, 0x54) --dict.nes("NES_CPU_WR", 0x5555, 0x54) end --read PRG-ROM flash ID local function prgrom_manf_id( debug ) local rv init_mapper() if debug then print("reading PRG-ROM manf ID") end --A0-A14 are all directly addressable in CNROM mode --and mapper writes don't affect PRG banking --address doesn't get applied to flash unless M2 is high --prg_data-addr_oe levelshifter pin is driven by ~M2 dict.nes("FLASH_3V_WR", 0x8AAA, 0xAA) dict.nes("FLASH_3V_WR", 0x8555, 0x55) dict.nes("FLASH_3V_WR", 0x8AAA, 0x90) rv = dict.nes("NES_CPU_RD", 0x8000) if debug then print("attempted read PRG-ROM manf ID:", string.format("%X", rv)) end --0x01 rv = dict.nes("NES_CPU_RD", 0x8002) if debug then print("attempted read PRG-ROM prod ID:", string.format("%X", rv)) end --0xDA(top), 0x5B(bot) --exit software dict.nes("FLASH_3V_WR", 0x8000, 0xF0) end --host flash one bank at a time... --this is controlled from the host side one bank at a time --but requires mapper specific firmware flashing functions --there is super slow version commented out that doesn't require MMC3 specific firmware code local function flash_prgrom(file, rom_size_KB, debug) init_mapper() --test some bytes --wr_prg_flash_byte(0x0000, 0xA5, true) --wr_prg_flash_byte(0x0FFF, 0x5A, true) print("\nProgramming PRG-ROM flash") --initial testing of MMC3 with no specific MMC3 flash firmware functions 6min per 256KByte = 0.7KBps local base_addr = 0x8000 --writes occur $8000-9FFF local bank_size = 32*1024 --in CNROM mode 32KB PRG bank local buff_size = 1 --number of bytes to write at a time local cur_bank = 0 local total_banks = rom_size_KB*1024/bank_size local byte_num --byte number gets reset for each bank local byte_str, data, readdata while cur_bank < total_banks do if (cur_bank %8 == 0) then print("writting PRG bank: ", cur_bank, " of ", total_banks-1) end --write the current bank to the mapper register --nes_cpu_wr(0x5000, 0x81); //outer reg select mode dict.nes("NES_CPU_WR", 0x5000, 0x81) --nes_cpu_wr(0x8000, bank); //outer bank dict.nes("NES_CPU_WR", 0x8000, cur_bank) --nes_cpu_wr(0x5000, 0x54); // dict.nes("NES_CPU_WR", 0x5000, 0x54) --program the entire bank's worth of data --[[ This version of the code programs a single byte at a time but doesn't require -- MMC3 specific functions in the firmware print("This is slow as molasses, but gets the job done") byte_num = 0 --current byte within the bank while byte_num < bank_size do --read next byte from the file and convert to binary byte_str = file:read(buff_size) data = string.unpack("B", byte_str, 1) --write the data --SLOWEST OPTION: no firmware MMC3 specific functions 100% host flash algo: --wr_prg_flash_byte(base_addr+byte_num, data, false) --0.7KBps --EASIEST FIRMWARE SPEEDUP: 5x faster, create MMC3 write byte function: dict.nes("MMC3_PRG_FLASH_WR", base_addr+byte_num, data) --3.8KBps (5.5x faster than above) --NEXT STEP: firmware write page/bank function can use function pointer for the function above -- this may cause issues with more complex algos -- sometimes cur bank is needed -- for this to work, need to have function post conditions meet the preconditions -- that way host intervention is only needed for bank controls -- Is there a way to allow for double buffering though..? -- YES! just think of the bank as a complete memory -- this greatly simplifies things and is exactly where we want to go -- This is completed below outside the byte while loop @ 39KBps if (verify) then readdata = dict.nes("NES_CPU_RD", base_addr+byte_num) if readdata ~= data then print("ERROR flashing byte number", byte_num, " in bank",cur_bank, " to flash ", data, readdata) end end byte_num = byte_num + 1 end --]] --Have the device write a banks worth of data --FAST! 13sec for 512KB = 39KBps flash.write_file( file, bank_size/1024, mapname, "PRGROM", false ) cur_bank = cur_bank + 1 end print("Done Programming PRG-ROM flash") end --dump the PRG ROM local function dump_prgrom( file, rom_size_KB, debug ) --PRG-ROM dump 32KB at a time in CNROM mode with supervisor register local KB_per_read = 32 local num_reads = rom_size_KB / KB_per_read local read_count = 0 local addr_base = 0x80 -- $8000 PAGE while ( read_count < num_reads ) do if debug then print( "dump PRG part ", read_count, " of ", num_reads) end --select desired bank(s) to dump --nes_cpu_wr(0x5000, 0x81); //outer reg select mode --nes_cpu_wr(0x8000, bank); //outer bank --nes_cpu_wr(0x5000, 0x00); //chr reg select act like CNROM dict.nes("NES_CPU_WR", 0x5000, 0x81) dict.nes("NES_CPU_WR", 0x8000, read_count) dict.nes("NES_CPU_WR", 0x5000, 0x54) --dump bank's worth of data dump.dumptofile( file, KB_per_read, addr_base, "NESCPU_PAGE", false ) read_count = read_count + 1 end end local function read_gift( base, len ) local rv init_mapper() --select last bank in read only mode dict.nes("NES_CPU_WR", 0x5000, 0x81) dict.nes("NES_CPU_WR", 0x8000, 0xFF) local i = 0 while i < len do rv = dict.nes("NES_CPU_RD", base+i) io.write(string.char(rv)) i = i+1 end i = 0 print("") while i < len do rv = dict.nes("NES_CPU_RD", base+i) io.write(string.format("%X.", rv)) i = i+1 end print("") end local function write_gift(base, off) local i local rv init_mapper() --select last bank in flash mode dict.nes("NES_CPU_WR", 0x5000, 0x81) dict.nes("NES_CPU_WR", 0x8000, 0xFF) dict.nes("NES_CPU_WR", 0x5000, 0x54) --enter unlock bypass mode dict.nes("FLASH_3V_WR", 0x8AAA, 0xAA) dict.nes("FLASH_3V_WR", 0x8555, 0x55) dict.nes("FLASH_3V_WR", 0x8AAA, 0x20) --write 0xA0 to address of byte to write, then write data dict.nes("FLASH_3V_WR", base+off, 0xA0) dict.nes("FLASH_3V_WR", base+off, 0x00) --end previous line off=off+1 dict.nes("FLASH_3V_WR", base+off, 0xA0) dict.nes("FLASH_3V_WR", base+off, 0x15) --line number..? off=off+1 dict.nes("FLASH_3V_WR", base+off, 0xA0) dict.nes("FLASH_3V_WR", base+off, string.byte("(",1)) --start with open parenth --off = off + 1 --increase to start of message but index starting at 1 i = 1 --regular editions don't have gift messages --local msg1 = "Contributor Edition" --local msg1 = "Limited Edition" --local msg2 = "82 of 100" -- all flashed --local msg1 = " Contributor Edition " --local msg2 = " PinoBatch " --issue if capital P or R is first char for some reason.. local len = string.len(msg1) while (i <= len) do dict.nes("FLASH_3V_WR", base+off+i, 0xA0) dict.nes("FLASH_3V_WR", base+off+i, string.byte(msg1,i)) --line 1 of message print("write:", string.byte(msg1,i)) i=i+1 end off = off + i dict.nes("FLASH_3V_WR", base+off, 0xA0) dict.nes("FLASH_3V_WR", base+off, 0x00) --end current line off=off+1 dict.nes("FLASH_3V_WR", base+off, 0xA0) dict.nes("FLASH_3V_WR", base+off, 0x16) --line number..? off=off+1 dict.nes("FLASH_3V_WR", base+off, 0xA0) dict.nes("FLASH_3V_WR", base+off, string.byte("(",1)) --start with open parenth i = 1 len = string.len(msg2) while (i <= len) do dict.nes("FLASH_3V_WR", base+off+i, 0xA0) dict.nes("FLASH_3V_WR", base+off+i, string.byte(msg2,i)) --line 2 of message print("write:", string.byte(msg2,i)) i=i+1 end off = off + i dict.nes("FLASH_3V_WR", base+off, 0xA0) dict.nes("FLASH_3V_WR", base+off, 0x00) --end current line --]] --poll until stops toggling, or data is as wrote -- rv = dict.nes("NES_CPU_RD", 0x8BDC) -- print (rv) --exit unlock bypass dict.nes("FLASH_3V_WR", 0x8000, 0x90) dict.nes("FLASH_3V_WR", 0x8000, 0x00) --reset the flash chip dict.nes("FLASH_3V_WR", 0x8000, 0xF0) end --Cart should be in reset state upon calling this function --this function processes all user requests for this specific board/mapper local function process(process_opts, console_opts) local test = process_opts["test"] local read = process_opts["read"] local erase = process_opts["erase"] local program = process_opts["program"] local verify = process_opts["verify"] local dumpfile = process_opts["dump_filename"] local flashfile = process_opts["flash_filename"] local verifyfile = process_opts["verify_filename"] local rv = nil local file local prg_size = console_opts["prg_rom_size_kb"] local chr_size = console_opts["chr_rom_size_kb"] local wram_size = console_opts["wram_size_kb"] --initialize device i/o for NES dict.io("IO_RESET") dict.io("NES_INIT") --test cart by reading manf/prod ID if test then prgrom_manf_id(true) --manipulate gift message local base = 0x8BD0 local start_offset = 0xC local len = 80 --read_gift(base, len) --write_gift(base, start_offset) read_gift(base, len) end --dump the cart to dumpfile if read then print("\nDumping PRG & CHR ROMs...") --initialize the mapper for dumping init_mapper(debug) file = assert(io.open(dumpfile, "wb")) --create header: pass open & empty file & rom sizes create_header(file, prg_size, chr_size) --dump cart into file dump_prgrom(file, prg_size, false) --close file assert(file:close()) print("DONE Dumping PRG & CHR ROMs") end --erase the cart -- erase = nil if erase then --initialize the mapper for erasing init_mapper(debug) print("\nerasing action53 tsop takes ~30sec"); print("erasing PRG-ROM"); --A0-A14 are all directly addressable in CNROM mode --only A0-A11 are required to be valid for tsop-48 --and mapper writes don't affect PRG banking dict.nes("FLASH_3V_WR", 0x8AAA, 0xAA) dict.nes("FLASH_3V_WR", 0x8555, 0x55) dict.nes("FLASH_3V_WR", 0x8AAA, 0x80) dict.nes("FLASH_3V_WR", 0x8AAA, 0xAA) dict.nes("FLASH_3V_WR", 0x8555, 0x55) dict.nes("FLASH_3V_WR", 0x8AAA, 0x10) rv = dict.nes("NES_CPU_RD", 0x8000) local i = 0 --TODO create some function to pass the read value --that's smart enough to figure out if the board is actually erasing or not while ( rv ~= 0xFF ) do rv = dict.nes("NES_CPU_RD", 0x8000) i = i + 1 end print(i, "naks, done erasing prg."); end --program flashfile to the cart if program then --initialize the mapper for dumping init_mapper(debug) --open file file = assert(io.open(flashfile, "rb")) --determine if auto-doubling, deinterleaving, etc, --needs done to make board compatible with rom --not susceptible to bus conflicts --flash cart flash_prgrom(file, prg_size, true) --close file assert(file:close()) end --verify flashfile is on the cart if verify then --for now let's just dump the file and verify manually --initialize the mapper for dumping init_mapper(debug) file = assert(io.open(verifyfile, "wb")) --dump cart into file dump_prgrom(file, prg_size, false) --close file assert(file:close()) --compare the flash file vs post dump file if (files.compare( verifyfile, flashfile, true ) ) then print("\nSUCCESS! Flash verified") else print("\n\n\n FAILURE! Flash verification did not match") end end dict.io("IO_RESET") end -- global variables so other modules can use them -- call functions desired to run when script is called/imported -- functions other modules are able to call action53_tsop.process = process -- return the module's table return action53_tsop