INL-retro-progdump/firmware/source/pinport_al.h

422 lines
11 KiB
C

#ifndef _pinport_al_h
#define _pinport_al_h
//Define the board type in makefile
//#define AVR_KAZZO
//#define STM_ADAPTER
//#define STM_INL6
#ifdef AVR_CORE
#include "avr_gpio.h"
#elif STM_CORE
#include <stm32f0xx.h>
#endif
//=============================================================================================
//
// PINPORT ABSTRACTION LAYER
//
//=============================================================================================
//
// The pinport abstraction layer creates definitions of generic device GPIO ports.
// These generic ports are designed to make high level firmware generic to the
// actual underlying hardware. The ports created have defined sizes and access rules
// that keeps firmware from growing in complexity based on the specific hardware.
//
// Idea is to define ports which are available on all hardware, but also create ports
// which may not be available to other hardwares. If the firmware is instructed to
// perform an operation on a port that's not present, or not initialized/setup error
// codes will be sent back to the host to designate the lack of port presence.
//
// ---------------------------------------------------------------------------------------
// CONTROL PORT: 16bits for function
// C15-0
// Directionality: All pins are able to be toggled between input/output individually
// Driver: All pins indiv selectable pull-up or float for input. Output always push pull.
// Write/Output: Bit access only, no byte/word accesses
// Read/Input: Bit access only, returned byte/word will be zero if clear, non-zero if set
// ---------------------------------------------------------------------------------------
// STM32 GPIO registers are quite different than AVR style
// they are more flexible/capable, but a little tricky to interface with
// some features present on STM32 pins, but not AVR
// - PULL-DOWN ability (and PULL-UP like AVR)
// - Speed/Slew rate selection
// - Open drain outputs (and push/pull like AVR)
// - Bit set/reset registers to remove necessity of RMW operations
// - Lockability to keep port config bits from changing until reset
// - GPIO blocks must be provided a clock and enabled to "turn on"
// failing to do so will cause hard faults when accessing registers!!
//
// All GPIO registers can be accessed in byte, halfword, or 32bit full words
// unless otherwise noted
//
// GPIOx->MODER[1:0] 32bit registers control direction/type of driver
// 00- Input (default reset state, except SWC-PA15 & SWD-PA13 default AF)
// 01- Gen Purp Output
// 10- Alternate func (SPI, I2C, etc)
// 11- reserved
// MODER[1] typically leave clear unless using AltFunc
// MODER[0] becomes equivalent of AVR DDR
#define MODER_OP 0x01
#define MODER_AF 0x10
//
// GPIOx->OTYPER 16bit registers control driver type
// 0- Push Pull (default reset state)
// 1- Open Drain
// N/A when MODER is set to "00" INPUT
// we can generally just ignore this register and use pushpull as AVR does
//
// GPIOx->OSPEEDR[1:0] 32bit registers control pin driver speed/slew
// x0- Low speed (default reset state, except SWD-PA13 default High Spd)
// 01- Medium speed
// 11- High speed
// N/A when MODER is set to "00" INPUT
// we can generally just ignore this register and use slow speed
//
// GPIOx->PUPDR[1:0] 32bit registers control pull-up/down resistors
// this register is in effect even when alternate functions are enabled
// 00- floating/disabled, no pull-up/down (default for most pins except below)
// 01- Pull-up enabled (default SWD-PA13) also CIRAM A10
// 10- Pull-down enabled (default SWC-PA14)
// 11- Reserved, don't use (prob enables both which would be bad...)
// PUPDR[0] is kinda like AVR PORT when DDR is set to INPUT, and PUPDR[1]=0
// This ends up being a little cleaner than AVR i/o interfacing
// Can probably just enable pull-ups on everything and leave it like that
// -only exception being USB pins (PA11/12) better leave those floating
#define PUPDR_FLT 0x00
#define PUPDR_PU 0x01
#define PUPDR_PD 0x10
//
// GPIOx->IDR 16bit register used to read current input level on pin
// this register is read only
//
// GPIOx->ODR 16bit register used to set output of pin if enabled by MODER
// this register is read/writeable
//
// GPIOx->BSRR 32bit register to only set/clear pins
// BR[31:16] upper halfword is will reset/clear pin if written to '1' value
// BS[15:00] lower halfword is will set pin if written to '1' value
// writing 0 to any bit has no effect
// if setting both BS register has priority (bit will be set)
// this register is write only!
//
// GPIO->BRR 16bit register equivalent to upper word of BSRR register above
// provides convinent separate BR register that doesn't need shifted
//
// GPIOx->LCKR 17bit register MUST BE ACCESSED in 32bit full words!!!
// complex sequence needed to set, but once done lock config/altfunc
// bits for that GPIO. I interpret this to mean the registers above
// plus AF registers, exception of IDR, ODR, BSRR registers
// Good to use this for things than we don't want to accidentally change:
// - USB & XTAL pins come to mind as good candidates
//
// GPIOx->AFRL/H 2 sets of 32bit registers to determine alternate function
// of GPIO if enabled with MODER registers. Default is AF0 at reset
// AVR GPIO are rather simple in comparison to STM32 GPIO:
//
// DDRx 8bit direction register
// Determines 'direction' of pin driver
// set for output, clear of input
// reads give current status of register
//
// PORTx 8bit output/pullup register
// writes set/clear pin if DDR is set/OP
// write '1' to enable pull-up if DDR is clear/IP
// write '0' to disable pull-up if DDR is clear/IP
// reads give current status of register
// bit access must be done by means of RMW/shadow reg
//
// PINx 8bit read register
// read when DDR is clear/IP to get current pin level
// reading when O/P is of little use, as should be value of PORTx
// read only register
//kaz6 is PB1
//#define LED (1U)
//#define IOP_LED_EN RCC_AHBENR_GPIOBEN
//#define GPIO_LED GPIOB
//
////kaz adapter is PC13
//#define LED (13U)
//#define IOP_LED_EN RCC_AHBENR_GPIOCEN
//#define GPIO_LED GPIOC
//
////kaz adapter data0 debug is PB8
//#define DEBUG (8U)
//#define IOP_DEBUG_EN RCC_AHBENR_GPIOBEN
//#define GPIO_DEBUG GPIOB
//
//#define LED_ON() (GPIO_LED->ODR |= (0x1U<<LED))
//#define LED_OFF() (GPIO_LED->ODR &= ~(0x1U<<LED))
//
//#define DEBUG_HI() (GPIO_DEBUG->ODR |= (0x1U<<DEBUG))
//#define DEBUG_LO() (GPIO_DEBUG->ODR &= ~(0x1U<<DEBUG))
#ifdef STM_INL6
#define IOP_LED_EN RCC_AHBENR_GPIOBEN
//C0 "ROMSEL" pinA0
#define C0bank GPIOA
#define C0 (0U)
//C1 "R/W" pinA1
#define C1bank GPIOA
#define C1 (1U)
//C2 "/RD" pinA2
#define C2bank GPIOA
#define C2 (2U)
//C3 "/WR" pinA3
#define C3bank GPIOA
#define C3 (3U)
//C4 "AUDIO_L" pinA4
#define C4bank GPIOA
#define C4 (4U)
//C5 "AUDIO_R" pinA5
#define C5bank GPIOA
#define C5 (5U)
//C6 "CART_RST" pinA6
#define C6bank GPIOA
#define C6 (6U)
//C7 "KEY_DIN" pinA7
#define C7bank GPIOA
#define C7 (7U)
//C8 "CLK_OUT" pinA8
#define C8bank GPIOA
#define C8 (8U)
//C9 "FLIPFLOP" pinB0
#define C9bank GPIOB
#define C9 (0U)
//C10 "LED" pinB1
#define C10bank GPIOB
#define C10 (1U)
//C11 "KEY_DOUT" pinD2
#define C11bank GPIOD
#define C11 (2U)
//C12 "BOOTLOAD" not present
//#define C12bank GPIO
//#define C12 (U)
//C13 "SWDIO" pinA13
#define C13bank GPIOA
#define C13 (13U)
//C14 "SWCLK" pinA14
#define C14bank GPIOA
#define C14 (14U)
//C15 "IRQ" pinA15
#define C15bank GPIOA
#define C15 (15U)
#endif
#ifdef STM_ADAPTER
#define IOP_LED_EN RCC_AHBENR_GPIOCEN
//C0 "ROMSEL" pinA4
#define C0bank GPIOA
#define C0 (4U)
//C1 "R/W" pinA5
#define C1bank GPIOA
#define C1 (5U)
//C2 "/RD" pinA7
#define C2bank GPIOA
#define C2 (7U)
//C3 "/WR" pinB0
#define C3bank GPIOB
#define C3 (0U)
//C4 "AUDIO_L/AHL" pinB1
#define C4bank GPIOB
#define C4 (1U)
//C5 "AUDIO_R/FREE" pinA6
#define C5bank GPIOA
#define C5 (6U)
//C6 "CART_RST/EXP0" pinA0
#define C6bank GPIOA
#define C6 (0U)
////C7 "KEY_DIN" pinA7
//#define C7bank GPIOA
//#define C7 (7U)
//C8 "CLK_OUT/M2" pinA3
#define C8bank GPIOA
#define C8 (3U)
//C9 "FLIPFLOP/AXL" pinA2
#define C9bank GPIOA
#define C9 (2U)
//C10 "LED" pinC13
#define C10bank GPIOC
#define C10 (13U)
//C11 "KEY_DOUT/CIRAMCE" pinA10
#define C11bank GPIOA
#define C11 (10U)
//C12 "BOOTLOAD" not present
//#define C12bank GPIO
//#define C12 (U)
//C13 "SWDIO/CIRAMA10" pinA13
#define C13bank GPIOA
#define C13 (13U)
//C14 "SWCLK" pinA14
#define C14bank GPIOA
#define C14 (14U)
//C15 "IRQ" pinA15
#define C15bank GPIOA
#define C15 (15U)
#endif
#ifdef AVR_KAZZO
//C0 "ROMSEL" pinC1
#define C0bank GPIOC
#define C0 (1U)
//C1 "R/W" pinC2
#define C1bank GPIOC
#define C1 (2U)
//C2 "/RD" pinC4
#define C2bank GPIOC
#define C2 (4U)
//C3 "/WR" pinC5
#define C3bank GPIOC
#define C3 (5U)
//C4 "AUDIO_L/AHL" pinC7
#define C4bank GPIOC
#define C4 (7U)
//C5 "AUDIO_R/FREE" pinC3
#define C5bank GPIOC
#define C5 (3U)
//C6 "CART_RST/EXP0" pinD0
#define C6bank GPIOD
#define C6 (0U)
////C7 "KEY_DIN" pinA7
//#define C7bank GPIOA
//#define C7 (7U)
//C8 "CLK_OUT/M2" pinC0
#define C8bank GPIOC
#define C8 (0U)
//C9 "FLIPFLOP/AXL" pinD7
#define C9bank GPIOD
#define C9 (7U)
//C10 "LED" pinD1
#define C10bank GPIOD
#define C10 (1U)
//C11 "KEY_DOUT/CIRAMCE" pinC6
#define C11bank GPIOC
#define C11 (6U)
//C12 "BOOTLOAD" pinD6
#define C12bank GPIOD
#define C12 (6U)
//C13 "SWDIO/CIRAMA10" pinD5
#define C13bank GPIOD
#define C13 (5U)
////C14 "SWCLK" pinA14
//#define C14bank GPIOA
//#define C14 (14U)
//C15 "IRQ" pinD3
#define C15bank GPIOD
#define C15 (3U)
#endif
//pinport abstraction layer pin mappings roughly based on inl6 schematic
//C0 "ROMSEL"
//C1 "R/W"
//C2 "/RD"
//C3 "/WR"
//C4 "AUDIO_L"
//C5 "AUDIO_R"
//C6 "CART_RST"
//C7 "KEY_DIN"
//C8 "CLK_OUT"
//C9 "FLIPFLOP"
//C10 "LED"
//C11 "KEY_DOUT"
//C12 "BOOTLOAD"
//C13 "SWDIO"
//C14 "SWCLK"
//C15 "IRQ"
#define LED C10
#define LEDbank C10bank
#ifdef STM_CORE
// 00- Input (default reset state, except SWC-PA15 & SWD-PA13 default AF)
// 01- Gen Purp Output
// Assume MODER[1] is clear (default setting, only gets set of AF)
// Assume PUPDR[1] is clear (default setting, only set if pulldown enabled)
#define PCb_IP_PU(bank, pin) bank->MODER &= ~(MODER_OP<<(pin*2)); bank->PUPDR |= (PUPDR_PU<<(pin*2))
#define PCb_IP_FLT(bank, pin) bank->MODER &= ~(MODER_OP<<(pin*2)); bank->PUPDR &= ~(PUPDR_PU<<(pin*2))
#define PCb_OP_EN(bank, pin) bank->MODER |= (MODER_OP<<(pin*2))
#define PCb_READ(bank, pin, val) val = (bank->IDR & (1<<pin))
#define PCb_SET_HI(bank, pin) bank->BSRR = 1<<pin
// PCb_SET_HI(C0bank, C0)
#define PCb_SET_LO(bank, pin) bank->BRR = 1<<pin
#endif //STM_CORE
#ifdef AVR_CORE
#define PCb_IP_PU(bank, pin) bank->DDR &= ~(1<<pin); bank->PORT |= (1<<pin)
#define PCb_IP_FLT(bank, pin) bank->DDR &= ~(1<<pin); bank->PORT &= ~(1<<pin)
#define PCb_OP_EN(bank, pin) bank->DDR |= (1<<pin)
#define PCb_READ(bank, pin, val) val = (bank->PIN & (1<<pin))
#define PCb_SET_HI(bank, pin) bank->PORT |= (1<<pin)
#define PCb_SET_LO(bank, pin) bank->PORT &= ~(1<<pin)
#endif //AVR_CORE
#endif