Commit Graph

13 Commits

Author SHA1 Message Date
Paul blue asus 535b45be27 Committing working build that was used for flashing STM8 SNES v3.1
boards for SF2 builds.  Not necessarily the most clean, but it was
stable and worked well.

Need to get swim comms working on other board designs.
Need to come up with better swim activation with more exact timing.
Still need to implement swim comms on avr, hopefully that doesn't prove
to be too much of a PITA...  Not looking forward to that.  Can probably
only handle low speed, and faking pullup may not work as well without
time on it's side @ 16Mhz...
2017-12-20 09:28:01 -06:00
Paul Molloy f4bbad3d4a Have SWIM write communications working on STM Adatper and INL6.
Able to enter active mode and Write on the fly.
Simple test to toggle LED on STM8 GPIO works!
Still quite far from ideal setup.  Some things needed:
-defines for ACK/NAK/NO_RESP in dictionary to report inteligbly to lua
-move test SWIM code into separate lua script
-define STM8-CIC registers for easier calling from lua
-entering active mode is too board dependent, need to use swim_base
-Need to make better use of device timers for entering active mode
-arm assembly is quite a mess, unaware of calling convention when writting
-stopping more than just r0-4, r5+ need to be restored if used
-thinking I'd like a full out assmebly file that gets compiled separately
-nothing is done to support SWIM with AVR
-hacking lack of powerful enough pullup on SWIM pin
	not much that can be done to get around this...
	don't want to add resistors to programmer for every pin I 'might' use
	don't want to add resistors to each board that's made
-seems to work well enough, but reads will prob prove challenging
-currently only running at slow speed with ton of NOPs
2017-09-04 13:53:37 -05:00
Paul Molloy 6eb0570335 Have stm devices activating SWIM on SNES STM8 CIC.
AVR not yet working, performing low level SWIM operations will require
decent amount of core specific code due to differences in pin driver
styles, timers, cycles per instruction, etc.  The fact that SWIM pin
changes based on the board ADDR0, DATA0, EXP0, etc multiplies this low
level code...  Thinking about executing SWIM low level drivers from SRAM.
Initialization could include loading these routines to SRAM.
For now just focusing on supporting SWIM on STM cores for SNES boards.
2017-09-02 12:38:56 -05:00
Paul Molloy 4b3c822a24 Have basic SNES cart detection and dumping working. Dumping mario paint
works on both inl6 and original kazzo just fine.  Dumping v3 prototype has
a few byte corruptions on inl6, but is fine on original kazzo.  The same
bytes often fail, but not consistently.  Tinkered with adding delay, but
that didn't help.  Also have issue with adapter not dumping properly.
Prob bug with HIGH ADDR on that board need to sort out still.  Going to
focus on erasing and dumping next then come back to some of these issues.
2017-08-21 12:30:39 -05:00
Paul Molloy 7e8ad86d3a Big update, have PRG-ROM dumping on NROM working for all devices!
tested and verified on purple, green, and yellow/orange avr kazzos and
stm32 inlretro6 proto, and stm32 adapter with yellow kazzo board

AVR takes ~17.5sec to dump 256KB -> 1:10 for 1MByte = 14.6KBps
STM takes  ~8.5sec to dump 1MByte = 120KBps
STM32 usb driver is far from optimal as it's setup to be minimal with only
8byte endpoint0 to make an effort to align avr and stm.  Larger endpoints
and bulk transfers should greatly speed up stm usb transfers

refactored firmware buffer.c and implemented most of the required opcodes
added check that should cover if device isn't ready for a IN/OUT
transfer.  Does this by usbFunctionSetup returning zero which causes the
device to ignore the host.  Don't think I've got the stm32 usb driver
setup properly to handle this not sure I fully understand Vusb driver
either.  Anyway, hopefully it works well enough for now and keep this in
mind if issues crop up in future.

Still haven't implemented usbFunctionWrite, not sure stm usb driver is
setup properly yet either..

build sizes:
avr yellow/orange: avr-size build_avr/avr_kazzo.elf
   text    data     bss     dec     hex filename
   5602       6     674    6282    188a build_avr/avr_kazzo.elf

previous builds of avr code size was ~6.4KB when flashing and dumping was working.
AVR bootloader is 1.7KB taking up majority of 2KB boot sector.
So AVR has 16KB - 2KB boot = 14KB available, using ~44% of non-boot sector
available flash Have 4 buffers defined, and 512B of raw buffer defined so using
~65% SRAM Making pretty good use of the chip just for basic framework.
Not a ton of room for board/mapper specific routines, so will have to keep this
in mind.  Creating more generic routines to save flash will come with a speed
hit, but perhaps we shouldn't worry too much about that as devices below
really boost speed without even trying.  There is some sizable amount of
SRAM available could perhaps load temporary routines into SRAM and execute
Also have ability to decrease buffer sizes/allocation.  Perhaps routines
could actually be store *IN* the raw buffers.. ;)

stm adapter: arm-none-eabi-size -t build_stm/inlretro_stm.elf
   text    data     bss     dec     hex filename
   7324       0     680    8004    1f44 build_stm/inlretro_stm.elf
Currently targetting STM32F070C6 which has 32KB flash, 6KB SRAM
Could upgrade to STM32F070CB in same LQFP-48 package w/ 128KB/16KB
Don't think that'll be of much value though especially with limitation
on connectors for adapter.
So currently don't have user bootloader, only built in ones.
8KB of 32KB avaiable flash = 25% utilization
680B of 6KB available sram = 11% utilization
32KB device doubles amount of available flash compared to AVR, although
stm32 code isn't quite a condensed compared to AVR.

stm inlretro6: arm-none-eabi-size -t build_stm/inlretro_stm.elf
   text    data     bss     dec     hex filename
   6932       0     680    7612    1dbc build_stm/inlretro_stm.elf
Mostly limited to STM32F070RB as choosing device requiring XTAL, and
desire large number of i/o.  This device provides 128KB flash, 16KB SRAM
Currently using 7.6KB/128KB flash = 6% utilization
Currently using 680B/16KB SRAM = 4.1% utilization
LOTS of room for growth in this device!!  Part of why I choose it over
crystalless 072 version, as it came with more flash for less cost.

Also hardly making use of 1KB of USB dedicated SRAM:
32B buffer table entries
16B endpoint0 IN/OUT
48B of 1024B available = 4.6% utilization
2017-08-07 16:06:23 -05:00
Paul Molloy 8b5650b75f Well over due commit with lots of updates..
Have separate lua modules now in scripts/app folder
Dictionary calls are now their own lua module
firmware now capable of calling multiple different dictionaries
have firmware & lua io and nes dictionaries, able to detect
NES and famicom carts.  Created expansion port abstraction so most kazzo
versions behave identically.
Created separate make file for stm adapter and inl6
added PURPLE_KAZZO and GREEN_KAZZO defines back in.  They work well enough
for sensing NES vs famicom carts so far.  GREEN_KAZZO requires
PURPLE_KAZZO to also be defined.  GREEN_KAZZO is also only compatible with
AVR_CORE due to software_AHL/AXL functions specifically written for AVR.
I think things will work if a STM_ADAPTER is placed on a PURPLE_KAZZO and
both those defines are made as only real difference is software tying of
AXL and X_OE.  But haven't tested this aside from ensuring it compiles.
Have correction to pinport_al.h that will commit immediately after this.
2017-08-05 16:04:59 -05:00
Paul Molloy 895bd6a737 Completely trimmed avr build down to bare bones, only completing
enumeration with host, no vendor/class requests handled.
move avr builds into avr_release dir
move original source files into source/old for future reference.

avr-size avr_kazzo.elf
text    data     bss     dec     hex filename
1496       2      43    1541     605 avr_kazzo.elf
2017-07-22 14:30:03 -05:00
paul eeepc 4db2929c3b Big overdue commit of past few days effort..
Detecting mirroring code working and tested
Started working on buffer operations from host
Current code compiles but not yet at point where can start testing
Adding cpu page read to nes.c to have faster dumping operations.
moving enums to shared as gets used quite a bit communicating between device and host.
2016-12-11 01:06:41 -06:00
Paul Molloy c6a68c679f Adding EXP0_PULLUP_TEST should probably verify pullup on EXP0 provides
logic 1 if relying on it.  Seems to work fine on NES discrete and
INLXO-ROM boards where planning to utilize it.  SNES can't pull up due to
pulldown and original famicom cart can't either perhaps because of
EXP6 EXP FF output being too much of a load..?
2016-11-27 17:47:40 -06:00
Paul Molloy 7d00145431 Big step in confirmation of pin manipulations working on kazzo.
Able to read PRG-ROM flash chip's manf and device ID from commandline.

New dictionaries io and nes along with firmware files to support.
now have io_reset, nes_init, and snes_init io.c functions
nes.c functions including discrete_exp0_prgrom_wr and emulate_nes_cpu_rd.

New dictionary.c/.h for host to make dictionary calls easier including
setting proper return data lengths based on opcode.

adding nop command to pinport.h

AVR Memory Usage
----------------
Device: atmega164a

Program:    2960 bytes (18.1% Full)
(.text + .data + .bootloader)

Data:         53 bytes (5.2% Full)
(.data + .bss + .noinit)
2016-11-27 00:18:46 -06:00
Paul Molloy 31678bacfe renamed: host/source/pinport.h -> shared/shared_pinport.h
modified:   firmware/source/pinport.c
modified:   firmware/source/pinport.h
	-creating shared_pinport.h which is effectively a dictionary for
	pinport opcodes
	-file gets copied to host and firmware source dirs when compilied.
	-hardware macros had to be renamed to include underscore to
	differentiate opcode name from hardware macro.
	-pinport.c now is a nice clean switch between opcode name and
	macro with all literal numbers removed.
	-now don't have to manually track/update opcode numbers between
	multiple locations.

modified:   firmware/source/io.c
modified:   firmware/source/main.c
	-updates to add underscore pre-fix to hardware macros.
2016-11-23 18:12:50 -06:00
paul eeepc b43b3c0756 modified: Makefile
-modified to caluclate ROM/RAM usage of atmega164a

new file:   source/io.h
new file:   source/logic.h
	-created files

modified:   source/io.c
modified:   source/main.c
	-created io_pullup going to make separate io inits based on cartridge inserted
	-modifing for io.h

modified:   source/pinport.h
	-File mostly complete with all possible pin manipulations
2016-11-22 20:27:52 -06:00
paul eeepc 5620b34a9e new file: io.c
-creation of io file
modified:   main.c
	-moving io setup to io.c
new file:   pinport.h
	-creation of pinport file, intended to be avr specific code from macro.h
2016-11-21 17:54:29 -06:00