Two different Makefiles, specify which with -f file flag:
make -f Make_avr clean program
make -f Make_stm clean program
made release dir to put released .hex firmware files
Need to make separate avr build folder
Need to make one master Makefile that calls one of the other makefiles as
instructed.
Currently device is recognized by PC but does nothing else other than
being recognized by app during connection process:
arm-none-eabi-size -t build_stm/inlretro_stm.elf
text data bss dec hex filename
1332 0 20 1352 548 build_stm/inlretro_stm.elf
1332 0 20 1352 548 (TOTALS)
avr-size avr_kazzo.elf
text data bss dec hex filename
1496 2 43 1541 605 avr_kazzo.elf
enumeration with host, no vendor/class requests handled.
move avr builds into avr_release dir
move original source files into source/old for future reference.
avr-size avr_kazzo.elf
text data bss dec hex filename
1496 2 43 1541 605 avr_kazzo.elf
usb_Func_write updates buffer status if bytes remaining is zero.
Not the best solution as a buffer could be over/under run, define
MAKECHECKS to have buffer mark itself if full.
This method is faster and we always have transfer sizes match buffer sizes
anyway.
Had to add check to get cur_buff status and wait to send payload until
it's empty. Still need to add timeout check as it'll spin forever if
there is a problem and it's never empty...
device should be able to handle buffer sizes smaller than usb transfer
but this probably isn't true if the first two bytes are stuffed into setup
packet. Currently relies on end of (upto) 8 byte transfer to fill buffer.
MAKECHECKS would verify we don't overflow buffer.. Still kind of a half
thought out idea unfortunately.
Not sure how I thought flash operations were previously working as there
were many bugs I had to correct to support flash operations properly.
Operations module appears to be working so far, still need to pass
functions to operation module.
Flash operations verify PRG-ROM 32KB writes working with file comparison.
Currently dependent on extra buffer status reads to delay next buffer.
I think the write operation is taking longer than the usb load operation.
Potentially due to slow code of operation module, but also possible I
had only been testing with slow eeepc linux machine previously. Perhaps
combination of both.
Still need to correct issue so added buff status delays aren't needed.
buffer manager should be able to key off of status==USB_FULL but that
doesn't seem to work. When trying I don't always get the same number of
buffers to get flashed so appear to have a race condition or something
not properly intialized..?
Need sort out sending of USB STALL if buffer isn't ready to be loaded yet.
This commit is mainly for documentation/reference purposes as things are
kind of working, but buggy/unstable.
AVR Memory Usage
----------------
Device: atmega164a
Program: 6486 bytes (39.6% Full)
(.text + .data + .bootloader)
Data: 679 bytes (66.3% Full)
(.data + .bss + .noinit)
Things appear to be working with some early testing. Assumption that oper_info elements
are aligned in SRAM linearly appears to hold true. Researching this I found it probably
was true, but can't be certain esp if gets changed in the future to not be purely 8byte
sized elements.
Still need to provide means to decode function numbers info function pointers.
Need to verify page programmed successfully as it currently just continues even if unable to
flash proper data. Need to make write page utilize variables for bank address based on mapper
and/or memory as currently doesn't flash CHR-ROM due to $5555 $2AAA being above address space
of CHR-ROM
Found bug with setting map_n_part due to >/< instead of >=/<= for setting called_buff...
Was also setting mem_type and part backwards in dump.c
The had issues with usb timing out for more than 1 buffer read back
Problem was due to lack of usbPoll while dumping during double buffering
Adding usbPoll to page read to correct issue
Appears to be issue with dumping first byte of this choplifter cart I'm testing with.
Not so certain it's my bug though.. No matter what I do the first byte reads
back 0x78 and copy I downloaded has 0x00. Setting my first byte to 0x00 also
creates proper CRC32 according to bootgod's database. So need to look into this more
to figure out what's going on.
Detecting mirroring code working and tested
Started working on buffer operations from host
Current code compiles but not yet at point where can start testing
Adding cpu page read to nes.c to have faster dumping operations.
moving enums to shared as gets used quite a bit communicating between device and host.
Processing input args to create rom file when dumping
Adding create_rom function in file.c working but need to add check if file already exists
Listing out number of mappers which planning to support
Using CHR-RAM sensing, and flash manf/prod ID based on PRG-ROM banking
fixing bug in firmware for ppu writes was ANDing in /A13 instead of ORing..
adding datasheets to hardware folder for 5v PLCC and 3v TSOP flash used on all flash boards
Prepended DICT_ to dictionary names to prevent using those defines for something else accidentally
"NES/SNES" etc could be used in a lot of places, don't want to use wrong enum/define in wrong place.
created enums.h to list out all enums/defines for cartridge and memory elements in one location.
separate file.c/h file for getting data in/out of a files, and opening/closing them.
adding test roms to roms folder so they can be used for various testing.
buffer opcode updates to transfer payloads
including stuffing two bytes of write transfers in setup packet.
Calling specific buffers with miscdata or opcode.
new dump and flash modules for firmware.
new buffer function update_buffers called during main to monitor and
manage buffer objects when not being loaded/unloaded from USB.
Trying to prevent transfer from exceeding buffer size.
Also verifying buffer's status is properly set to enforce upholding of the status.
Giving usbFunctionWrite a means to communicate it's error/success back to host with USB 'dictionary'.
Had a good lesson on what static means... :/
everything working now as previously designed
speed testing on windows10 PC yeilded ~21KBps when transferring 128-512KB
payloads and 128Byte transfer size. Going to bump to 256 and see how that
does after 128KB speed tests on linux machine.
created host test.c/.h file for general testing of new features.
that way I can start working on erase/write.h files and just use test.c as
scratch code space for tinkering and still call with -t flag on command
line.
modified dictionary calls to include pointers to data and lengths.
moved all buffer operations out of usb.c with new bridge function between
the two files. Lots of pointing going on and lessons learned..
Thankfully everything seems to be working if you actually call the
functions as I designed them.. Gotta love trouble shooting bugs that
don't exist.. Helped updating allocate output to get returned as error
back to the host.
Moved typedef structs to firmware type.h file as seemed to cause
compilation issues being contained in the files .h file when other .c
files needed those types.
Fixed casting warnings with usbMsgPtr ended up looking at usbdrv.c figured
out how close I got, just shouldn't have been putting the * in there..
complete. should be able to allocate buffers from host, but haven't got
to testing it yet. Compiling on firmware though..
Currently have 256 bytes of raw_buffer, and 8 buffer objects/structs
each with ~16 bytes per object. So could trim things down, but still have
decent amount of SRAM left. Could have another 256 byte buffer at this
rate.. but might not leave enough SRAM for temporary routines.
Possible that raw buffer space could be dynamically allocated
as either buffer space or temporary routine space...
AVR Memory Usage
----------------
Device: atmega164a
Program: 4094 bytes (25.0% Full)
(.text + .data + .bootloader)
Data: 573 bytes (56.0% Full)
(.data + .bss + .noinit)
logic 1 if relying on it. Seems to work fine on NES discrete and
INLXO-ROM boards where planning to utilize it. SNES can't pull up due to
pulldown and original famicom cart can't either perhaps because of
EXP6 EXP FF output being too much of a load..?
cleaned up firmware pinport.h used PURPLE/GREEN KAZZO for all #ifdef's
AVR Memory Usage
----------------
Device: atmega164a
Program: 3404 bytes (20.8% Full)
(.text + .data + .bootloader)
Data: 53 bytes (5.2% Full)
(.data + .bss + .noinit)
final kazzo design hex commited as comparable build to the past two commits of green/purple.
So this .hex commit is apples to apples with recently commited purple/green .hex commits.
Able to read PRG-ROM flash chip's manf and device ID from commandline.
New dictionaries io and nes along with firmware files to support.
now have io_reset, nes_init, and snes_init io.c functions
nes.c functions including discrete_exp0_prgrom_wr and emulate_nes_cpu_rd.
New dictionary.c/.h for host to make dictionary calls easier including
setting proper return data lengths based on opcode.
adding nop command to pinport.h
AVR Memory Usage
----------------
Device: atmega164a
Program: 2960 bytes (18.1% Full)
(.text + .data + .bootloader)
Data: 53 bytes (5.2% Full)
(.data + .bss + .noinit)
new file: host/source/erase.c
new file: host/source/erase.h
creating erase files called from main with e_flag
modified: firmware/source/usb.c
introducing switch statement with range of values of opcode type detection.
modified: host/source/usb_operations.h
turning off debug
modified: shared/shared_errors.h
renumbering some error codes
thinking I'll have codes which can come from avr set to 128+
rearranged some of the .h files, created dictionary file to list all dictionaries of opcodes.
moved error codes to shared file so host can interpret firmware error codes.
created firmware usb.c/h to handle usb operations (didn't move as git seems to think..)
cleaned up fw main function and file.
host usb_operations, created USBrequest struct type to more easily handle all transfer info.
Currently able to send pinport commands and read back return values from retro prog.
Just need to start writting functions to send opcodes and start actually preforming some cartridge operations.
modified: pinport.c
modified: pinport.h
-completing implementation of remaining shared_pinport opcodes
modified: ../../shared/shared_pinport.h
-few opcodes deleted because I decided they were stupid when got
around to implementing them. Set user up for errors and not
useful generally.
modified: source/logic.h
-adding IP and OP definitions to use on DDR registers
-ERROR codes denote what function errored out
modified: ../shared/shared_pinport.h
-changing some opcode names for clarity and lowercasing non-recommended ones
modified: source/pinport.c
-fix bug that recreated cur_AHL_addr and cur_AXL_addr
-create opcode with 8bit operand function
modified: firmware/source/pinport.c
modified: firmware/source/pinport.h
-creating shared_pinport.h which is effectively a dictionary for
pinport opcodes
-file gets copied to host and firmware source dirs when compilied.
-hardware macros had to be renamed to include underscore to
differentiate opcode name from hardware macro.
-pinport.c now is a nice clean switch between opcode name and
macro with all literal numbers removed.
-now don't have to manually track/update opcode numbers between
multiple locations.
modified: firmware/source/io.c
modified: firmware/source/main.c
-updates to add underscore pre-fix to hardware macros.
modified: source/pinport.h
-adding some compatibility between boards.
-purple and green should work under final version commands.
-making some commands lower case which aren't recommended.
-defining SUCCESS & ERROR_CODES
new file: pinport.c
-Creation of file with giant switch to decode byte value into
macro call.
-software AXL and AHL clocking of for green boards.
modified: pinport.h
-removed #ifdef for signals, should only be based on board when
possible.
-created macro for AXL/AHL_CLK to call software function
deleted: macro.h
-don't want this old guy around any more...
-modified to caluclate ROM/RAM usage of atmega164a
new file: source/io.h
new file: source/logic.h
-created files
modified: source/io.c
modified: source/main.c
-created io_pullup going to make separate io inits based on cartridge inserted
-modifing for io.h
modified: source/pinport.h
-File mostly complete with all possible pin manipulations
-creation of io file
modified: main.c
-moving io setup to io.c
new file: pinport.h
-creation of pinport file, intended to be avr specific code from macro.h
-shared .h files used in both firmware and host app
modified: firmware/Makefile
modified: host/Makefile
-added shared dependency to copy shared files to source prior to
building
modified: host/source/usb_operations.h
modified: firmware/source/main.c
-removing usb commands (now in shared)
modified: host/include/dbg.h
-adding SUCCESS defintion
modified: host/source/inlprog.c
-calling write file if write arg sent
new file: host/source/write_operations.c
new file: host/source/write_operations.h
-creation of write operations files
-opens file and reads header
-some skeleton comments
-lots of work left to do here
new file: roms/nrom_v_test.nes
-adding NROM test rom file